Example #1
0
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'), mode='a')
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'), mode='a')
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_imgreid_dataset(name=args.dataset,
                                                dataset_dir=args.root,
                                                fore_dir=args.fore_dir)

    transform_train = ST.Compose([
        ST.Scale((args.height, args.width), interpolation=3),
        ST.RandomHorizontalFlip(),
        ST.ToTensor(),
        ST.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ST.RandomErasing(0.5)
    ])

    transform_test = ST.Compose([
        ST.Scale((args.height, args.width), interpolation=3),
        ST.ToTensor(),
        ST.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    trainloader = DataLoader(
        ImageDataset_hardSplit_seg(dataset.train, transform=transform_train),
        sampler=RandomIdentitySampler(dataset.train,
                                      num_instances=args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids)
    print(model)

    criterion_xent = CrossEntropyLabelSmooth(use_gpu=use_gpu)
    criterion_htri = TripletLoss()
    criterion_mask = MaskLoss()
    criterion_split = HardSplitLoss()
    criterion_cluster = ClusterLoss()

    optimizer = init_optim(args.optim, model.parameters(), args.lr,
                           args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=args.stepsize,
                                         gamma=args.gamma)

    if args.resume:
        if check_isfile(args.resume):
            checkpoint = torch.load(args.resume)
            model.load_state_dict(checkpoint['state_dict'])
            args.start_epoch = checkpoint['epoch']
            rank1 = checkpoint['rank1']
            print("Loaded checkpoint from '{}'".format(args.resume))
            print("- start_epoch: {}\n- rank1: {}".format(
                args.start_epoch, rank1))

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(args.start_epoch, args.max_epoch):

        start_train_time = time.time()
        train(epoch, model, criterion_xent, criterion_htri, criterion_mask,
              criterion_split, criterion_cluster, optimizer, trainloader,
              use_gpu)
        train_time += round(time.time() - start_train_time)

        scheduler.step()

        if (epoch + 1) > args.start_eval and (
                epoch + 1) % args.eval_step == 0 or epoch == 0:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1

            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()

            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
    print("==========\nArgs:{}\n==========".format(args))
Example #2
0
model.load_state_dict(torch.load(model_state_dict), strict=True)

model.train(False)
for params in model.parameters():
    params.requires_grad = False

model = model.to(DEVICE)

normalize = transforms.Normalize(
    mean=[0.485, 0.456, 0.406],
    std=[0.229, 0.224, 0.225]
)

preprocess = transforms.Compose([
    transforms.Scale(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    normalize])

in_path = "/content/drive/My Drive/Lorenzo/ego-rnn-two-in-one/get_modulation/frames"
out_path = "/content/drive/My Drive/Lorenzo/ego-rnn-two-in-one/get_modulation/out2"

inputFlow = []
inputFrame = []

frames = []
for i in range(1, len(os.listdir(in_path+"/rgb"))+1):
    print(i)

    # FLOW X
    fl_name = in_path + '/X/flow_x_' + str(int(round(i))).zfill(5) + '.png'  # zfill used to add leading zeros
Example #3
0
            args.scales, args.sample_size)
    elif args.train_crop == 'center':
        crop_method = spatial_transforms.MultiScaleCornerCrop(
            args.scales, args.sample_size, crop_positions=['c'])
    before_crop_duration = int(args.sample_duration * args.downsample)

    if args.mode == 'train':
        temporal_transform = TemporalSequentialCrop(before_crop_duration,
                                                    args.downsample)

        if args.view == 'front_depth' or args.view == 'front_IR':

            spatial_transform = spatial_transforms.Compose([
                crop_method,
                spatial_transforms.RandomRotate(),
                spatial_transforms.SaltImage(),
                spatial_transforms.Dropout(),
                spatial_transforms.ToTensor(args.norm_value),
                spatial_transforms.Normalize([0], [1])
            ])
        elif args.view == 'top_depth' or args.view == 'top_IR':
            spatial_transform = spatial_transforms.Compose([
                spatial_transforms.RandomHorizontalFlip(),
                spatial_transforms.Scale(args.sample_size),
                spatial_transforms.CenterCrop(args.sample_size),
                spatial_transforms.RandomRotate(),
                spatial_transforms.SaltImage(),
                spatial_transforms.Dropout(),
                spatial_transforms.ToTensor(args.norm_value),
                spatial_transforms.Normalize([0], [1])
            ])
Example #4
0
import lrp
from tqdm import tqdm
import os
import random

# In[2]:


norm_value = 1
# ds_mean = [114.7748 / norm_value, 107.7354 / norm_value, 99.4750 / norm_value]
ds_mean = [90.0, 98.0, 102.0]
ds_std = [38.7568578 / norm_value, 37.88248729 / norm_value,40.02898126 / norm_value]
st = spatial_transforms.Compose([
    spatial_transforms.Scale(112),
    spatial_transforms.CornerCrop(112, 'c'),
    spatial_transforms.ToTensor(1),
    spatial_transforms.Normalize(ds_mean, [1,1,1]) #Hara et. al. normalised by mean only
    # spatial_transforms.Normalize(ds_mean, ds_std)
])
tt = temporal_transforms.LoopPadding(16)
ds = ucf101.UCF101(
    root_path="/media/datasets/Video/UCF-101/jpg",
    annotation_path="/media/datasets/Video/UCF-101/ucf101_01.json",
    subset="validation",
    n_samples_for_each_video=0,
    spatial_transform=st,
    temporal_transform=tt
)


# In[3]:
Example #5
0
os.system('cp %s %s ' % (COMMAND_FILE, DUMP_DIR))  # bkp of command shell file
os.system('cp %s %s' % (MODEL_FILE, DUMP_DIR))  # bkp of model def
os.system('cp utils/net_utils.py %s ' % (DUMP_DIR))  # bkp of net_utils file
LOG_FOUT = open(os.path.join(DUMP_DIR, 'log_evaluate.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')

NUM_CLASSES = FLAGS.num_classes

HOSTNAME = socket.gethostname()

# validation transform
normalize = spatial_transforms.ToNormalizedTensor(mean=get_mean(),
                                                  std=get_std())
if FCN == 0:
    val_transform = spatial_transforms.Compose([
        spatial_transforms.Resize(FULL_SIZE),
        spatial_transforms.CenterCrop(WIDTH), normalize
    ])
elif FCN == 1:
    val_transform = spatial_transforms.Compose([
        spatial_transforms.Resize(FULL_SIZE),
        spatial_transforms.CenterCrop(WIDTH), normalize
    ])
elif FCN == 3:
    val_transform = spatial_transforms.Compose(
        [spatial_transforms.Resize(FULL_SIZE), normalize])
elif FCN == 5:
    val_transform = spatial_transforms.Compose(
        [spatial_transforms.Resize(FULL_SIZE), normalize])
elif FCN == 6:
    val_transform = spatial_transforms.Compose(
        [spatial_transforms.Resize(FULL_SIZE), normalize])
Example #6
0
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR))  # bkp of model def
os.system('cp %s %s' % (__file__, LOG_DIR))  # bkp of train procedure
os.system('cp %s %s ' % (COMMAND_FILE, LOG_DIR))  # bkp of command shell file
os.system('cp utils/net_utils.py %s ' % (LOG_DIR))  # bkp of net_utils file
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')

# train augmentation
normalize = spatial_transforms.ToNormalizedTensor(mean=get_mean(),
                                                  std=get_std())
train_transform = spatial_transforms.Compose([
    spatial_transforms.RandomResizedCrop(size=(WIDTH, WIDTH),
                                         scale=(0.5, 1.0),
                                         ratio=(1. - 0.1, 1. + 0.1)),
    # spatial_transforms.RandomHorizontalFlip(),
    spatial_transforms.ColorJitter(brightness=0.25,
                                   contrast=0.25,
                                   saturation=0.25,
                                   hue=0.1),
    normalize
])
# validation transform
val_transform = spatial_transforms.Compose([
    # spatial_transforms.Resize(256),
    spatial_transforms.CenterCrop(WIDTH),
    normalize
])
target_transform = target_transforms.ClassLabel()

train_loader, val_loader = dataloader.get_loader(
    root=DATA,
normal_vec_top_ir = np.load('./normvec/normal_vec_top_ir.npy')

normal_vec_front_d = torch.from_numpy(normal_vec_front_d)
normal_vec_front_ir = torch.from_numpy(normal_vec_front_ir)
normal_vec_top_d = torch.from_numpy(normal_vec_top_d)
normal_vec_top_ir = torch.from_numpy(normal_vec_top_ir)

if use_cuda:
    normal_vec_front_d = normal_vec_front_d.cuda()
    normal_vec_front_ir = normal_vec_front_ir.cuda()
    normal_vec_top_d = normal_vec_top_d.cuda()
    normal_vec_top_ir = normal_vec_top_ir.cuda()

val_spatial_transform = spatial_transforms.Compose([
    spatial_transforms.Scale(sample_size),
    spatial_transforms.CenterCrop(sample_size),
    spatial_transforms.ToTensor(255),
    spatial_transforms.Normalize([0], [1]),
])

print(
    "===========================================Loading Test Data=========================================="
)

test_data_front_d = DAD_Test(
    root_path=root_path,
    subset='validation',
    view='front_depth',
    sample_duration=sample_duration,
    type=None,
    spatial_transform=val_spatial_transform,
)