Example #1
0
def spatial_poly_select(xvals, yvals, geometry):
    try:
        from shapely.geometry import Polygon
        boxes = (Polygon(np.column_stack([xs, ys]))
                 for xs, ys in zip(xvals, yvals))
        poly = Polygon(geometry)
        return np.array([poly.contains(p) for p in boxes])
    except ImportError:
        raise ImportError("Lasso selection on geometry data requires "
                          "shapely to be available.")
Example #2
0
def spatial_geom_select(x0vals, y0vals, x1vals, y1vals, geometry):
    try:
        from shapely.geometry import box, Polygon
        boxes = (box(x0, y0, x1, y1)
                 for x0, y0, x1, y1 in zip(x0vals, y0vals, x1vals, y1vals))
        poly = Polygon(geometry)
        return np.array([poly.contains(p) for p in boxes])
    except ImportError:
        raise ImportError("Lasso selection on geometry data requires "
                          "shapely to be available.")
Example #3
0
    def _shapely_to_coordinates(cls, shape):
        import shapely.geometry as sg
        if isinstance(shape, sg.MultiPolygon):
            multipolygon = []
            for polygon in shape:
                polygon_coords = Polygon._shapely_to_coordinates(polygon)
                multipolygon.append(polygon_coords)

            return multipolygon
        elif isinstance(shape, sg.Polygon):
            return [Polygon._shapely_to_coordinates(shape)]
        else:
            raise ValueError("""
Received invalid value of type {typ}. Must be an instance of Polygon or MultiPolygon
""".format(typ=type(shape).__name__))
Example #4
0
def test_points_intersects_polygon(gp_points, gp_polygon):
    # Get scalar Polygon
    sg_polygon = gp_polygon[0]

    # Compute expected intersection
    expected = gp_points.intersects(sg_polygon)

    # Create spatialpandas objects
    polygon = Polygon.from_shapely(sg_polygon)
    points = PointArray.from_geopandas(gp_points)
    points_series = GeoSeries(points, index=np.arange(10, 10 + len(points)))

    # Test Point.intersects
    result = np.array([
        point_el.intersects(polygon) for point_el in points
    ])
    np.testing.assert_equal(result, expected)

    # Test PointArray.intersect
    result = points.intersects(polygon)
    np.testing.assert_equal(result, expected)

    # Test PointArray.intersects with inds
    inds = np.flipud(np.arange(0, len(points)))
    result = points.intersects(polygon, inds)
    np.testing.assert_equal(result, np.flipud(expected))

    # Test GeoSeries.intersects
    pd.testing.assert_series_equal(
        points_series.intersects(polygon),
        pd.Series(expected, index=points_series.index)
    )
Example #5
0
def spatial_select_columnar(xvals, yvals, geometry):
    try:
        from spatialpandas.geometry import Polygon, PointArray
        points = PointArray((xvals.astype('float'), yvals.astype('float')))
        poly = Polygon([np.concatenate([geometry, geometry[:1]]).flatten()])
        return points.intersects(poly)
    except Exception:
        pass
    try:
        from shapely.geometry import Point, Polygon
        points = (Point(x, y) for x, y in zip(xvals, yvals))
        poly = Polygon(geometry)
        return np.array([poly.contains(p) for p in points])
    except ImportError:
        raise ImportError("Lasso selection on tabular data requires "
                          "either spatialpandas or shapely to be available.")
Example #6
0
def test_point_intersects_polygon(sg_polygon, points):
    polygon = Polygon.from_shapely(sg_polygon)

    for r in range(points.shape[0]):
        x, y = points[r, :]
        result = point_intersects_polygon(x, y, polygon.buffer_values,
                                          polygon.buffer_inner_offsets)

        expected = sg_polygon.intersects(sg.Point([x, y]))
        assert expected == result
Example #7
0
def spatial_select_columnar(xvals, yvals, geometry):
    if 'cudf' in sys.modules:
        import cudf
        if isinstance(xvals, cudf.Series):
            xvals = xvals.values.astype('float')
            yvals = yvals.values.astype('float')
            try:
                import cuspatial
                result = cuspatial.point_in_polygon(
                    xvals,
                    yvals,
                    cudf.Series([0], index=["selection"]),
                    [0],
                    geometry[:, 0],
                    geometry[:, 1],
                )
                return result.values
            except Exception:
                xvals = np.asarray(xvals)
                yvals = np.asarray(yvals)
    x0, x1 = geometry[:, 0].min(), geometry[:, 0].max()
    y0, y1 = geometry[:, 1].min(), geometry[:, 1].max()
    mask = (xvals >= x0) & (xvals <= x1) & (yvals >= y0) & (yvals <= y1)
    masked_xvals = xvals[mask]
    masked_yvals = yvals[mask]
    try:
        from spatialpandas.geometry import Polygon, PointArray
        points = PointArray(
            (masked_xvals.astype('float'), masked_yvals.astype('float')))
        poly = Polygon([np.concatenate([geometry, geometry[:1]]).flatten()])
        geom_mask = points.intersects(poly)
    except Exception:
        pass
    try:
        from shapely.geometry import Point, Polygon
        points = (Point(x, y) for x, y in zip(masked_xvals, masked_yvals))
        poly = Polygon(geometry)
        geom_mask = np.array([poly.contains(p) for p in points])
    except ImportError:
        raise ImportError("Lasso selection on tabular data requires "
                          "either spatialpandas or shapely to be available.")
    mask[np.where(mask)[0]] = geom_mask
    return mask
Example #8
0
def test_polygon():
    polygon = Polygon([large_square_ccw, unit_square_cw])
    assert polygon.length == 16.0
    assert polygon.area == 8.0