def neat_GP( population, toolbox, cxpb, mutpb, ngen, neat_alg, neat_cx, neat_h, neat_pelit, n_corr, num_p, params, problem, stats=None, halloffame=None, verbose=__debug__): """This algorithm reproduce the simplest evolutionary algorithm as presented in chapter 7 of [Back2000]_. :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param cxpb: The probability of mating two individuals. :param mutpb: The probability of mutating an individual. :param ngen: The number of generation. :param neat_alg: wheter or not to use species stuff. :param neat_cx: wheter or not to use neatGP cx :param neat_h: indicate the distance allowed between each specie :param neat_pelit: probability of being elitist, it's used in the neat cx and mutation :param n_corr: run number just to wirte the txt file :param num_p: problem number just to wirte the txt file :param params:indicate the params for the fitness sharing, the diffetent options are: -DontPenalize(str): 'best_specie' or 'best_of_each_specie' -Penalization_method(int): 1.without penalization 2.penalization fitness sharing 3.new penalization -ShareFitness(str): 'yes' or 'no' :param problem: (str) name of the problem. :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population. It uses :math:`\lambda = \kappa = \mu` and goes as follow. It first initializes the population (:math:`P(0)`) by evaluating every individual presenting an invalid fitness. Then, it enters the evolution loop that begins by the selection of the :math:`P(g+1)` population. Then the crossover operator is applied on a proportion of :math:`P(g+1)` according to the *cxpb* probability, the resulting and the untouched individuals are placed in :math:`P'(g+1)`. Thereafter, a proportion of :math:`P'(g+1)`, determined by *mutpb*, is mutated and placed in :math:`P''(g+1)`, the untouched individuals are transferred :math:`P''(g+1)`. Finally, those new individuals are evaluated and the evolution loop continues until *ngen* generations are completed. Briefly, the operators are applied in the following order :: evaluate(population) for i in range(ngen): offspring = select(population) offspring = mate(offspring) offspring = mutate(offspring) evaluate(offspring) population = offspring This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. .. [Back2000] Back, Fogel and Michalewicz, "Evolutionary Computation 1 : Basic Algorithms and Operators", 2000. """ logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) if neat_alg: # assign specie to each individual on the population species(population,neat_h) ind_specie(population) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # save data for the best individual best = open('./Results/%s/bestind_%d_%d.txt'%(problem, num_p, n_corr), 'a') best_st = open('./Results/%s/bestind_string_%d_%d.txt' % (problem, num_p, n_corr), 'a') # take the best on the population best_ind = best_pop(population) fitnesst_best = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values=fitnesst_best[0] best.write('\n%s;%s;%s;%s;%s' % (0, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) best_st.write('\n%s;%s' % (0, best_ind)) if neat_alg: # applying fitness sharing SpeciesPunishment(population,params,neat_h) if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print logbook.stream # Begin the generational process for gen in range(1, ngen+1): best_ind = copy.deepcopy(best_pop(population)) if neat_alg: # select set of parents parents = p_selection(population, gen) else: parents = toolbox.select(population, len(population)) if neat_cx: # applying neat-crossover n = len(parents) mut = 1 cx = 1 offspring = neatGP(toolbox, parents, cxpb, mutpb, n, mut, cx, neat_pelit) else: offspring = varOr(parents, toolbox, cxpb, mutpb) if neat_alg: # Assign species specie_parents_child(parents, offspring, neat_h) offspring[:] = parents+offspring ind_specie(offspring) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit else: invalid_ind = [ind for ind in offspring] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit orderbyfit = sorted(offspring, key=lambda ind: ind.fitness.values) if best_ind.fitness.values[0] <= orderbyfit[0].fitness.values[0]: offspring[:] = [best_ind] + orderbyfit[:len(population) - 1] if neat_alg: SpeciesPunishment(offspring, params, neat_h) # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} logbook.record(gen=gen, nevals=len(population), **record) if verbose: print logbook.stream best_ind = best_pop(population) fitnesses_test = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesses_test[0] best.write('\n%s;%s;%s;%s;%s'%(gen, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) best_st.write('\n%s;%s' % (gen, best_ind)) return population, logbook
def neat_GP_LS(population, toolbox, cxpb, mutpb, ngen, neat_alg, neat_cx, neat_h, neat_pelit, LS_flag, LS_select, cont_evalf, num_salto, SaveMatrix, GenMatrix, pset, n_corr, num_p, params, direccion, problem, testing, version, benchmark_flag, beta, random_speciation, config, stats=None, halloffame=None, verbose=__debug__): """This algorithm reproduce the simplest evolutionary algorithm as presented in chapter 7 of [Back2000]_. :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param cxpb: The probability of mating two individuals. :param mutpb: The probability of mutating an individual. :param ngen: The number of generation. :param neat_alg: wheter or not to use species stuff. :param neat_cx: wheter or not to use neatGP cx :param neat_h: indicate the distance allowed between each specie :param neat_pelit: probability of being elitist, it's used in the neat cx and mutation :param LS_flag: wheter or not to use LocalSearchGP :param LS_select: indicate the kind of selection to use the LSGP on the population. :param cont_evalf: contador maximo del numero de evaluaciones :param n_corr: run number just to wirte the txt file :param p: problem number just to wirte the txt file :param params:indicate the params for the fitness sharing, the diffetent options are: -DontPenalize(str): 'best_specie' or 'best_of_each_specie' -Penalization_method(int): 1.without penalization 2.penalization fitness sharing 3.new penalization -ShareFitness(str): 'yes' or 'no' :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population. It uses :math:`\lambda = \kappa = \mu` and goes as follow. It first initializes the population (:math:`P(0)`) by evaluating every individual presenting an invalid fitness. Then, it enters the evolution loop that begins by the selection of the :math:`P(g+1)` population. Then the crossover operator is applied on a proportion of :math:`P(g+1)` according to the *cxpb* probability, the resulting and the untouched individuals are placed in :math:`P'(g+1)`. Thereafter, a proportion of :math:`P'(g+1)`, determined by *mutpb*, is mutated and placed in :math:`P''(g+1)`, the untouched individuals are transferred :math:`P''(g+1)`. Finally, those new individuals are evaluated and the evolution loop continues until *ngen* generations are completed. Briefly, the operators are applied in the following order :: evaluate(population) for i in range(ngen): offspring = select(population) offspring = mate(offspring) offspring = mutate(offspring) evaluate(offspring) population = offspring This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. .. [Back2000] Back, Fogel and Michalewicz, "Evolutionary Computation 1 : Basic Algorithms and Operators", 2000. """ logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) #creating files to save data. d = './Results/%s/pop_file_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) pop_file = open(d, 'a') d = './Results/%s/bestind_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) best = open(d, 'w') # save data d = './Results/%s/bestind_str_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) out = open(d, 'w') d = './Timing/%s/pop_file_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) time_file = open(d, 'w') d = './Timing/%s/specie_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) time_specie = open(d, 'w') d = './Timing/%s/cruce_s_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) time_cx = open(d, 'w') d = './Specie/%s/specieind_%d_%d.csv' % (problem, num_p, n_corr) ensure_dir(d) specie_file = open(d, 'w') d = './Specie/%s/speciepop_%d_%d.csv' % (problem, num_p, n_corr) ensure_dir(d) specie_file_2 = open(d, 'w') d = './Specie/%s/specist_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) specie_statis = open(d, 'w') d = './Results/%s/bestind_LStr_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) bestind = open(d, 'w') d = './Matrix/%s/' % (problem) ensure_dir(d) begin = time.time() if SaveMatrix: # Saving data in matrix num_r = 11 num_r_sp = 2 if GenMatrix: num_salto = 1 num_c = ngen + 1 Matrix = np.empty(( num_c, num_r, )) Matrix_specie = np.empty(( num_c, num_r_sp, ), dtype=object) vector = np.arange(0, num_c, num_salto) else: num_c = (cont_evalf / num_salto) + 1 num_c_sp = (cont_evalf / num_salto) + 1 Matrix = np.empty(( num_c, num_r, )) Matrix_specie = np.empty(( num_c_sp, num_r_sp, ), dtype=object) vector = np.arange(1, cont_evalf + num_salto, num_salto) for i in range(len(vector)): Matrix[i, 0] = vector[i] Matrix_specie[i, 0] = vector[i] Matrix[:, 6] = 0. if neat_alg: begin_sp = time.time() if version == 1: for ind in population: bit = p_bin(ind) ind.binary_rep_set(bit) elif version != 1: for ind in population: level_info = level_node(ind) ind.nodefeat_set(level_info) if random_speciation: species_random(population, neat_h, version, beta) else: species(population, neat_h, version, beta) end_sp = time.time() time_specie.write( '\n%s;%s;%s;%s' % (0, begin_sp, end_sp, str(round(end_sp - begin_sp, 2)))) for ind in population: specie_file_2.write('\n%s,%s,%s' % (0, ind.get_specie(), ind.get_intracluster())) list_s = list_species(population) for specie in list_s: list_ind = get_ind_specie(specie, population) specie_file.write('\n%s,%s,%s' % (0, specie, list_ind[0].get_intracluster())) if funcEval.LS_flag: for ind in population: sizep = len(ind) + 2 param_ones = np.ones(sizep) param_ones[0] = 0 ind.params_set(param_ones) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit best_ind = best_pop(population) # best individual of the population if testing: fitnesst_best = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesst_best[0] if testing: best.write( '\n%s;%s;%s;%s;%s;%s' % (0, funcEval.cont_evalp, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) else: best.write('\n%s;%s;%s;%s;%s;%s' % (0, funcEval.cont_evalp, None, best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) data_pop = avg_nodes(population) if SaveMatrix: idx = 0 Matrix[idx, 1] = best_ind.fitness.values[0] if testing: Matrix[idx, 2] = best_ind.fitness_test.values[0] else: Matrix[idx, 2] = None Matrix[idx, 3] = len(best_ind) Matrix[idx, 4] = data_pop[0] Matrix[idx, 5] = 0. Matrix[idx, 6] = 1 # just an id to know if the current row is full Matrix[idx, 7] = data_pop[1] # max size Matrix[idx, 8] = data_pop[2] # min size Matrix[idx, 9] = ind.get_specie( ) # max number of species in the current population Matrix[idx, 10] = max(ind_specie(population), key=lambda x: x[0])[ 0] # max number of species in the current population np.savetxt('./Matrix/%s/idx_%d_%d.txt' % (problem, num_p, n_corr), Matrix, delimiter=",", fmt="%s") if neat_alg: SpeciesPunishment(population, params, neat_h) if funcEval.LS_flag == 1: strg = best_ind.__str__() l_strg = add_subt_cf(strg, args=[]) c = tree2f() cd = c.convert(l_strg) out.write('\n%s;%s;%s;%s;%s;%s' % (0, len(best_ind), best_ind.LS_applied_get(), best_ind.get_params(), cd, best_ind)) else: out.write('\n%s;%s;%s' % (0, len(best_ind), best_ind)) for ind in population: pop_file.write('\n%s;%s;%s' % (0, ind.fitness.values[0], ind)) print '---- Generation %d -----' % (0) print 'Problem: ', problem print 'Problem No.: ', num_p print 'Run No.: ', n_corr print 'neat-GP:', neat_alg print 'neat-cx:', neat_cx print 'Local Search:', funcEval.LS_flag if funcEval.LS_flag: ls_type = '' if LS_select == 1: ls_type = 'LSHS' elif LS_select == 2: ls_type = 'Best-Sp' elif LS_select == 3: ls_type = 'LSHS-Sp' elif LS_select == 4: ls_type = 'Best-Pop' elif LS_select == 5: ls_type = 'All-Pop' elif LS_select == 6: ls_type = 'LSHS-test' elif LS_select == 7: ls_type = 'Best set' elif LS_select == 8: ls_type = 'Random set' elif LS_select == 9: ls_type = "Best-Random set" print 'Local Search Heuristic: %s (%s)' % (LS_select, ls_type) print 'Best Ind.:', best_ind print 'Best Fitness:', best_ind.fitness.values[0] if testing: print 'Test fitness:', best_ind.fitness_test.values[0] print 'Avg Nodes:', avg_nodes(population) print 'Evaluations: ', funcEval.cont_evalp end_t = time.time() if SaveMatrix: idx = 0 Matrix_specie[idx, 1] = ind_specie(population) np.savetxt('./Specie/%s/specist_%d_%d.txt' % (problem, num_p, n_corr), Matrix_specie, delimiter=";", fmt="%s") if testing: time_file.write( '\n%s;%s;%s;%s;%s;%s' % (0, begin, end_t, str(round(end_t - begin, 2)), best_ind.fitness.values[0], best_ind.fitness_test.values[0])) else: time_file.write('\n%s;%s;%s;%s;%s' % (0, begin, end_t, str(round( end_t - begin, 2)), best_ind.fitness.values[0])) # Begin the generational process for gen in range(1, ngen + 1): print "hola" if not GenMatrix: if funcEval.cont_evalp > cont_evalf: break begin = time.time() print '---- Generation %d -----' % (gen) print 'Problem: ', problem print 'Problem No.: ', num_p print 'Run No.: ', n_corr print 'neat-GP:', neat_alg print 'neat-cx:', neat_cx print 'Local Search:', funcEval.LS_flag if funcEval.LS_flag: print 'Local Search Heuristic: %s (%s)' % (LS_select, ls_type) best_ind = copy.deepcopy(best_pop(population)) if neat_alg: # survival_p = p_worst parents = p_selection(population, survival_p=0.5) else: parents = toolbox.select(population, len(population)) begin_cx = time.time() if neat_alg: # neat-Crossover neat_cx and n = len(parents) mut = 1 cx = 1 offspring = neatGP(toolbox, parents, cxpb, mutpb, n, mut, cx, neat_pelit, neat_cx) else: offspring = varOr(parents, toolbox, cxpb, mutpb) end_cx = time.time() time_specie.write( '\n%s;%s;%s;%s' % (0, begin_cx, end_cx, str(round(end_cx - begin_cx, 2)))) if neat_alg: # Speciation of the descendants begin_sp = time.time() if version == 1: for ind in offspring: if ind.binary_rep_get() is None: bit = p_bin(ind) ind.binary_rep_set(bit) elif version == 2: for ind in offspring: if ind.nodefeat_get() is None: level_info = level_node(ind) ind.nodefeat_set(level_info) if random_speciation: specie_offspring_random(parents, offspring, neat_h, version, beta) else: specie_parents_child(parents, offspring, neat_h, version, beta) #calc_intracluster(population) offspring[:] = parents + offspring calc_intracluster(offspring) for ind in offspring: specie_file_2.write( '\n%s,%s,%s' % (gen, ind.get_specie(), ind.get_intracluster())) list_s = list_species(offspring) for specie in list_s: list_ind = get_ind_specie(specie, offspring) specie_file.write( '\n%s,%s,%s' % (gen, specie, list_ind[0].get_intracluster())) invalid_ind = [ind for ind in offspring] if funcEval.LS_flag: new_invalid_ind = [] for ind in invalid_ind: strg = ind.__str__() l_strg = add_subt(strg, ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fitness_ls = toolbox.map(toolbox.evaluate, new_invalid_ind) for ind, ls_fit in zip(invalid_ind, fitness_ls): funcEval.cont_evalp += 1 ind.fitness.values = ls_fit else: fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit end_sp = time.time() time_specie.write( '\n%s;%s;%s;%s' % (gen, begin_sp, end_sp, str(round(end_sp - begin_sp, 2)))) print "neat-alg" else: invalid_ind = [ind for ind in offspring] if funcEval.LS_flag: new_invalid_ind = [] for ind in invalid_ind: strg = ind.__str__() l_strg = add_subt(strg, ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fitness_ls = toolbox.map(toolbox.evaluate, new_invalid_ind) for ind, ls_fit in zip(invalid_ind, fitness_ls): funcEval.cont_evalp += 1 ind.fitness.values = ls_fit else: fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit orderbyfit = sorted(offspring, key=lambda ind: ind.fitness.values) if best_ind.fitness.values[0] <= orderbyfit[0].fitness.values[0]: offspring[:] = [best_ind] + orderbyfit[:len(population) - 1] if neat_alg: SpeciesPunishment(offspring, params, neat_h) if SaveMatrix: if GenMatrix: idx_aux = np.searchsorted(Matrix[:, 0], gen) Matrix_specie[idx_aux, 1] = ind_specie(offspring) else: idx_aux = np.searchsorted(Matrix_specie[:, 0], funcEval.cont_evalp) try: Matrix_specie[idx_aux, 1] = ind_specie(offspring) except IndexError: Matrix_specie[-1, 1] = ind_specie(offspring) np.savetxt('./Specie/%s/specist_%d_%d.txt' % (problem, num_p, n_corr), Matrix_specie, delimiter=";", fmt="%s") population[:] = offspring # population update cond_ind = 0 cont_better = 0 if funcEval.LS_flag: for ind in population: ind.LS_applied_set(0) if LS_select == 1: trees_h(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 2: best_specie(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 3: specie_h(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 4: best_pop_ls(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 5: all_pop(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 6: trees_h_wo(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 7: ls_bestset(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 8: ls_random(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) elif LS_select == 9: ls_randbestset(population, num_p, n_corr, pset, direccion, problem, benchmark_flag) # invalid_ind = [ind for ind in population] new_invalid_ind = [] for ind in population: strg = ind.__str__() l_strg = add_subt(strg, ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fitness_ls = toolbox.map(toolbox.evaluate, new_invalid_ind) print 'Fitness comp.:', for ind, ls_fit in zip(invalid_ind, fitness_ls): if ind.LS_applied_get() == 1: cond_ind += 1 if ind.fitness.values[0] < ls_fit: print '-', elif ind.fitness.values[0] > ls_fit: cont_better += 1 print '+', elif ind.fitness.values[0] == ls_fit: print '=', funcEval.cont_evalp += 1 pop_file.write( '\n%s;%s;%s;%s;%s;%s;%s;%s' % (gen, ind.fitness.values[0], ls_fit, ind.LS_applied_get(), ind, [x for x in ind.get_parent()] if ind.get_parent() is not None else [], [x for x in ind.get_params() ], ind.get_id())) ind.fitness.values = ls_fit print '' #for ind in population: else: for ind in population: pop_file.write('\n%s;%s;%s;%s;%s;%s;%s' % (gen, ind.fitness.values[0], ind.LS_applied_get(), ind.LS_story_get(), ind.off_cx_get(), ind.off_mut_get(), ind)) best_ind = best_pop(population) if funcEval.LS_flag: strg = best_ind.__str__() l_strg = add_subt(strg, best_ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) bestind.write('\n%s;%s;%s' % (gen, best_ind.fitness.values[0], cd)) toolbox.map(toolbox.evaluate_best_t, [cd]) if testing: fit_best = toolbox.map(toolbox.evaluate_best, [cd]) best_ind.fitness_test.values = fit_best[0] best.write( '\n%s;%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, best_ind.fitness.values[0], best_ind.LS_fitness_get(), best_ind.fitness_test.values[0], len(best_ind), avg_nodes(population))) else: best.write( '\n%s;%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, best_ind.fitness.values[0], best_ind.LS_fitness_get(), None, len(best_ind), avg_nodes(population))) out.write('\n%s;%s;%s;%s;%s;%s' % (gen, len(best_ind), best_ind.LS_applied_get(), best_ind.get_params(), cd, best_ind)) else: toolbox.map(toolbox.evaluate_best_t, [best_ind]) if testing: fitnesses_test = toolbox.map(toolbox.evaluate_best, [best_ind]) best_ind.fitness_test.values = fitnesses_test[0] best.write( '\n%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) else: best.write('\n%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, None, best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) bestind.write('\n%s;%s;%s' % (gen, best_ind.fitness.values[0], best_ind)) out.write('\n%s;%s;%s' % (gen, len(best_ind), best_ind)) if funcEval.LS_flag: print 'Num. LS:', cond_ind print 'Ind. Improvement:', cont_better print 'Best Ind. LS:', best_ind.LS_applied_get() print 'Best Ind.:', best_ind print 'Best Fitness:', best_ind.fitness.values[0] if testing: print 'Test fitness:', best_ind.fitness_test.values[0] print 'Avg Nodes:', avg_nodes(population) print 'Evaluations: ', funcEval.cont_evalp if SaveMatrix: data_pop = avg_nodes(population) if GenMatrix: idx_aux = np.searchsorted(Matrix[:, 0], gen) Matrix[idx_aux, 1] = best_ind.fitness.values[0] if testing: Matrix[idx_aux, 2] = best_ind.fitness_test.values[0] else: Matrix[idx_aux, 2] = None Matrix[idx_aux, 3] = len(best_ind) Matrix[idx_aux, 4] = data_pop[0] Matrix[idx_aux, 5] = gen Matrix[idx_aux, 6] = 1 Matrix[idx_aux, 7] = data_pop[1] # max nodes Matrix[idx_aux, 8] = data_pop[2] # min nodes if neat_alg: Matrix[idx_aux, 9] = best_ind.get_specie() Matrix[idx_aux, 10] = max(ind_specie(population), key=lambda x: x[0])[0] else: if funcEval.cont_evalp >= cont_evalf: num_c -= 1 idx_aux = num_c Matrix[num_c, 1] = best_ind.fitness.values[0] if testing: Matrix[num_c, 2] = best_ind.fitness_test.values[0] else: Matrix[num_c, 2] = None Matrix[num_c, 3] = len(best_ind) Matrix[num_c, 4] = data_pop[0] Matrix[num_c, 5] = gen Matrix[num_c, 6] = 1 Matrix[num_c, 7] = data_pop[1] #max_nodes Matrix[num_c, 8] = data_pop[2] #min nodes if neat_alg: Matrix[num_c, 9] = max(ind_specie(population), key=lambda x: x[0])[0] else: idx_aux = np.searchsorted(Matrix[:, 0], funcEval.cont_evalp) Matrix[idx_aux, 1] = best_ind.fitness.values[0] if testing: Matrix[idx_aux, 2] = best_ind.fitness_test.values[0] else: Matrix[idx_aux, 2] = None Matrix[idx_aux, 3] = len(best_ind) Matrix[idx_aux, 4] = data_pop[0] Matrix[idx_aux, 5] = gen Matrix[idx_aux, 6] = 1 Matrix[idx_aux, 7] = data_pop[1] #max nodes Matrix[idx_aux, 8] = data_pop[2] #min nodes if neat_alg: Matrix[idx_aux, 9] = max(ind_specie(population), key=lambda x: x[0])[0] id_it = idx_aux - 1 id_beg = 0 flag = True flag2 = False while flag: if Matrix[id_it, 6] == 0: id_it -= 1 flag2 = True else: id_beg = id_it flag = False if flag2: x = Matrix[id_beg, 1:8] Matrix[id_beg:idx_aux, 1:] = Matrix[id_beg, 1:] np.savetxt('./Matrix/%s/idx_%d_%d.txt' % (problem, num_p, n_corr), Matrix, delimiter=",", fmt="%s") end_t = time.time() if testing: time_file.write( '\n%s;%s;%s;%s;%s;%s' % (gen, begin, end_t, str(round(end_t - begin, 2)), best_ind.fitness.values[0], best_ind.fitness_test.values[0])) else: time_file.write('\n%s;%s;%s;%s;%s' % (gen, begin, end_t, str(round(end_t - begin, 2)), best_ind.fitness.values[0])) # import convert_order # convert_order.convert_(population) return population, logbook, best_ind.fitness.values[ 0], best_ind.fitness_test.values[0]
def neat_GP_LS(population, toolbox, cxpb, mutpb, ngen, neat_alg, neat_cx, neat_h,neat_pelit, LS_flag, LS_select, cont_evalf, num_salto, SaveMatrix, GenMatrix, pset,n_corr, num_p, params, direccion, problem, testing, version, stats=None, halloffame=None, verbose=__debug__): """This algorithm reproduce the simplest evolutionary algorithm as presented in chapter 7 of [Back2000]_. :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param cxpb: The probability of mating two individuals. :param mutpb: The probability of mutating an individual. :param ngen: The number of generation. :param neat_alg: wheter or not to use species stuff. :param neat_cx: wheter or not to use neat-crossover :param neat_h: indicate the distance allowed between each specie :param neat_pelit: probability of being elitist, it's used in the neat cx and mutation :param LS_flag: wheter or not to use GP-LS :param LS_select: indicate the heuristic to select individuals for the LS method. LS_select == 1:'LSHS' -- Heurisitic proposed by Z-Flores (2015) LS_select == 2:'Best-Sp' -- Best individual of the specie LS_select == 3:'LSHS-Sp' -- Heuristic 1 in each specie LS_select == 4:'Best-Pop' -- Best ind of the population LS_select == 5:'All-Pop' -- All population LS_select == 6:'LSHS-test' -- Heuristic 1 only in the test data LS_select == 7:'Best set' -- Best individuals set LS_select == 8:'Random set' -- Random individuals set LS_select == 9:'Best-Random set' -- Best individual set and then random selection of this individuals :param cont_evalf: Counter of the function evaluations :param num_salto: This is a parameter to save data in the Matrix, indicates the range for each row :param SaveMatrix: wheter or not to save data on a Matrix :param GenMatrix: wheter or not to save data in the Matrix on a generations form or function evals form :param pset: this is the primitive set :param n_corr: run number just to write the txt file :param num_p: problem number just to write the txt file :param params:indicate the params for the fitness sharing, the different options are: -DontPenalize(str): 'best_specie' or 'best_of_each_specie' -Penalization_method(int): 1.without penalization 2.penalization fitness sharing 3.new penalization -ShareFitness(str): 'yes' or 'no' :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param direccion: Path to find the training data. This parameter works in the g_address.py file. :param problem: Name of the problem. Save and Get data. :param testing: Wheter or not to use testing data. :param version: Number of the version to make the speciation. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population. It uses :math:`\lambda = \kappa = \mu` and goes as follow. It first initializes the population (:math:`P(0)`) by evaluating every individual presenting an invalid fitness. Then, it enters the evolution loop that begins by the selection of the :math:`P(g+1)` population. Then the crossover operator is applied on a proportion of :math:`P(g+1)` according to the *cxpb* probability, the resulting and the untouched individuals are placed in :math:`P'(g+1)`. Thereafter, a proportion of :math:`P'(g+1)`, determined by *mutpb*, is mutated and placed in :math:`P''(g+1)`, the untouched individuals are transferred :math:`P''(g+1)`. Finally, those new individuals are evaluated and the evolution loop continues until *ngen* generations are completed. Briefly, the operators are applied in the following order :: evaluate(population) for i in range(ngen): offspring = select(population) offspring = mate(offspring) offspring = mutate(offspring) evaluate(offspring) population = offspring This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. .. [Back2000] Back, Fogel and Michalewicz, "Evolutionary Computation 1 : Basic Algorithms and Operators", 2000. """ logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # creating files to save data. d = './Results/%s/pop_file_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) pop_file = open(d, 'a') d = './Results/%s/bestind_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) best = open(d, 'w') d = './Results/%s/bestind_str_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) out = open(d, 'w') d='./Timing/%s/pop_file_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) time_file = open(d, 'w') d = './Timing/%s/specie_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) time_specie = open(d, 'w') d = './Timing/%s/cruce_s_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) time_cx = open(d, 'w') d = './Specie/%s/specieind_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) specie_file = open(d, 'w') d = './Specie/%s/specist_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) specie_statis = open(d, 'w') d = './Results/%s/bestind_LStr_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) bestind = open(d, 'w') begin = time.time() if SaveMatrix: # Saving data in matrix num_r = 11 if GenMatrix: # To save the data in matrix by generations num_salto = 1 num_c = ngen+1 Matrix = np.empty((num_c, num_r,)) vector = np.arange(0, num_c, num_salto) else: # To save the data in matrix by function evaluations num_c = (cont_evalf/num_salto) + 1 Matrix = np.empty((num_c, num_r,)) vector = np.arange(1, cont_evalf+num_salto, num_salto) for i in range(len(vector)): Matrix[i, 0] = vector[i] Matrix[:, 6] = 0. begin_sp = time.time() # Saving data: speciaton init timing if neat_alg: # before version 3 for ind in population: level_info = level_node(ind) ind.nodefeat_set(level_info) species(population, neat_h, version) end_sp = time.time() # Saving data: speciaton end timing time_specie.write('\n%s;%s;%s;%s' % (0, begin_sp, end_sp, str(round(end_sp - begin_sp, 2)))) # Saving data in file specie_file.write('\n-------') for ind in population: specie_file.write('\n%s;%s;%s' % (ind.get_specie(),ind,version)) # Adding parameters for the LS algorithms if funcEval.LS_flag: for ind in population: sizep = len(ind)+2 param_ones = np.ones(sizep) param_ones[0] = 0 ind.params_set(param_ones) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit best_ind = best_pop(population) # best individual of the population if testing: fitnesst_best = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesst_best[0] best.write('\n%s;%s;%s;%s;%s;%s' % (0, funcEval.cont_evalp, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) else: best.write('\n%s;%s;%s;%s;%s;%s' % ( 0, funcEval.cont_evalp, None, best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) data_pop = avg_nodes(population) if SaveMatrix: idx = 0 Matrix[idx, 1] = best_ind.fitness.values[0] # best ind train data if testing: Matrix[idx, 2] = best_ind.fitness_test.values[0] # best ind test data else: Matrix[idx, 2] = None Matrix[idx, 3] = len(best_ind) # best individual size (number of nodes) Matrix[idx, 4] = data_pop[0] # avg size of the population Matrix[idx, 5] = 0. Matrix[idx, 6] = 1 # id to know if the current row is full Matrix[idx, 7] = data_pop[1] # max size of the population Matrix[idx, 8] = data_pop[2] # min size of the population Matrix[idx, 9] = best_ind.get_specie() # specie of the best individual Matrix[idx, 10] = max(ind_specie(population), key=lambda x: x[0])[0] # max number of species on current pop np.savetxt('./Matrix/%s/idx_%d_%d.txt' % (problem,num_p, n_corr), Matrix, delimiter=",", fmt="%s") if neat_alg: SpeciesPunishment(population,params,neat_h) if funcEval.LS_flag == 1: strg = best_ind.__str__() l_strg = add_subt_cf(strg, args=[]) c = tree2f() cd = c.convert(l_strg) out.write('\n%s;%s;%s;%s;%s;%s' % (0, len(best_ind), best_ind.LS_applied_get(), best_ind.get_params(), cd, best_ind)) else: out.write('\n%s;%s;%s' % (0, len(best_ind), best_ind)) for ind in population: pop_file.write('\n%s;%s'%(ind.fitness.values[0], ind)) ls_type = '' if LS_select == 1: ls_type = 'LSHS' elif LS_select == 2: ls_type = 'Best-Sp' elif LS_select == 3: ls_type = 'LSHS-Sp' elif LS_select == 4: ls_type = 'Best-Pop' elif LS_select == 5: ls_type = 'All-Pop' elif LS_select == 6: ls_type = 'LSHS-test' elif LS_select == 7: ls_type = 'Best set' elif LS_select == 8: ls_type = 'Random set' elif LS_select == 9: ls_type = 'Best-Random set' ################################ # Printing data ################################ print '---- Generation %d -----' % (0) print 'Problem: ', problem print 'Problem No.: ', num_p print 'Run No.: ', n_corr print 'neat-GP:', neat_alg print 'neat-cx:', neat_cx print 'Local Search:', funcEval.LS_flag if funcEval.LS_flag: print 'Local Search Heuristic: %s (%s)' % (LS_select,ls_type) print 'Best Ind.:', best_ind print 'Best Fitness:', best_ind.fitness.values[0] if testing: print 'Test fitness:', best_ind.fitness_test.values[0] print 'Avg Nodes:', avg_nodes(population) print 'Evaluations: ', funcEval.cont_evalp ################################## end_t = time.time() specie_statis.write('\n%s;%s' % (0, count_species(population))) if testing: time_file.write('\n%s;%s;%s;%s;%s;%s' % (0, begin,end_t, str(round(end_t - begin, 2)), best_ind.fitness.values[0], best_ind.fitness_test.values[0])) else: time_file.write('\n%s;%s;%s;%s;%s' % ( 0, begin, end_t, str(round(end_t - begin, 2)), best_ind.fitness.values[0])) # Begin the generational process for gen in range(1, ngen+1): if not GenMatrix: if funcEval.cont_evalp > cont_evalf: break begin = time.time() print '---- Generation %d -----' % (gen) print 'Problem: ', problem print 'Problem No.: ', num_p print 'Run No.: ', n_corr print 'neat-GP:', neat_alg print 'neat-cx:', neat_cx print 'Local Search:', funcEval.LS_flag if funcEval.LS_flag: print 'Local Search Heuristic: %s (%s)' % (LS_select, ls_type) best_ind = copy.deepcopy(best_pop(population)) if neat_alg: parents = p_selection(population, neat_pelit) else: parents = toolbox.select(population, len(population)) begin_cx = time.time() if neat_cx and neat_alg: # neat-Crossover n = len(parents) mut = 1 cx = 1 offspring = neatGP(toolbox, parents, cxpb, mutpb, n, mut, cx, neat_pelit) else: offspring = varOr(parents, toolbox, cxpb, mutpb) end_cx = time.time() time_specie.write('\n%s;%s;%s;%s' % (0, begin_cx, end_cx, str(round(end_sp - begin_sp, 2)))) if neat_alg: # Speciation of the descendants and fitness evaluation begin_sp = time.time() specie_parents_child(parents,offspring, neat_h, version) offspring[:] = parents+offspring invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit end_sp = time.time() time_specie.write('\n%s;%s;%s;%s' % (gen, begin_sp, end_sp, str(round(end_sp - begin_sp, 2)))) else: # evaluation of descendants invalid_ind = [ind for ind in offspring] if funcEval.LS_flag: # evaluating with the parameters set new_invalid_ind = [] for ind in invalid_ind: strg = ind.__str__() l_strg = add_subt(strg, ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fitness_ls = toolbox.map(toolbox.evaluate, new_invalid_ind) for ind, ls_fit in zip(invalid_ind, fitness_ls): funcEval.cont_evalp += 1 ind.fitness.values = ls_fit else: # normal evaluation fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit orderbyfit = sorted(offspring, key=lambda ind:ind.fitness.values) #print len(orderbyfit),len(best_ind) # Applying elitism: Best individual survives if best_ind.fitness.values[0] <= orderbyfit[0].fitness.values[0]: offspring[:] = [best_ind]+orderbyfit[:len(population)-1] if neat_alg: SpeciesPunishment(offspring, params, neat_h) specie_statis.write('\n%s;%s' % (gen, ind_specie(offspring))) population[:] = offspring # population update specie_file.write('\n%s--------------------------------' % gen) if neat_alg: for ind in population: specie_file.write('\n%s;%s;%s' % (ind.get_specie(), ind, version)) cond_ind = 0 cont_better = 0 if funcEval.LS_flag: for ind in population: ind.LS_applied_set(0) if LS_select == 1: trees_h(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 2: best_specie(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 3: specie_h(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 4: best_pop_ls(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 5: all_pop(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 6: trees_h_wo(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 7: ls_bestset(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 8: ls_random(population, num_p, n_corr, pset, direccion, problem) elif LS_select == 9: ls_randbestset(population, num_p, n_corr, pset, direccion, problem) invalid_ind = [ind for ind in population] new_invalid_ind = [] for ind in population: strg = ind.__str__() l_strg = add_subt(strg, ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fitness_ls = toolbox.map(toolbox.evaluate, new_invalid_ind) print 'Fitness comp.:', # Information about how goes the optimization for ind, ls_fit in zip(invalid_ind, fitness_ls): if ind.LS_applied_get() == 1: cond_ind += 1 if ind.fitness.values[0] < ls_fit: print '-', elif ind.fitness.values[0] > ls_fit: cont_better += 1 print '+', elif ind.fitness.values[0] == ls_fit: print '=', funcEval.cont_evalp += 1 ind.fitness.values = ls_fit print '' pop_file.write('\n----------------------------------------%s'%(gen)) for ind in population: pop_file.write('\n%s;%s;%s;%s'%(ind.LS_applied_get(),ind.fitness.values[0], ind, [x for x in ind.get_params()])) else: pop_file.write('\n----------------------------------------') for ind in population: pop_file.write('\n%s;%s;%s;%s;%s;%s'%(ind.LS_applied_get(),ind.LS_story_get(),ind.off_cx_get(),ind.off_mut_get(),ind.fitness.values[0], ind)) best_ind = best_pop(population) if funcEval.LS_flag: strg = best_ind.__str__() l_strg = add_subt(strg, best_ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) bestind.write('\n%s;%s;%s' % (gen, best_ind.fitness.values[0],cd)) if testing: fit_best = toolbox.map(toolbox.evaluate_test, [cd]) best_ind.fitness_test.values = fit_best[0] best.write('\n%s;%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, best_ind.fitness.values[0], best_ind.LS_fitness_get(), best_ind.fitness_test.values[0], len(best_ind), avg_nodes(population))) else: best.write('\n%s;%s;%s;%s;%s;%s;%s' % ( gen, funcEval.cont_evalp, best_ind.fitness.values[0], best_ind.LS_fitness_get(), None, len(best_ind), avg_nodes(population))) out.write('\n%s;%s;%s;%s;%s;%s' % (gen, len(best_ind), best_ind.LS_applied_get(), best_ind.get_params(), cd, best_ind)) else: if testing: fitnesses_test = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesses_test[0] best.write('\n%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) else: best.write('\n%s;%s;%s;%s;%s;%s' % ( gen, funcEval.cont_evalp, None, best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) bestind.write('\n%s;%s;%s' % (gen, best_ind.fitness.values[0], best_ind)) out.write('\n%s;%s;%s' % (gen, len(best_ind), best_ind)) if funcEval.LS_flag: print 'Num. LS:', cond_ind print 'Ind. Improvement:', cont_better print 'Best Ind. LS:', best_ind.LS_applied_get() print 'Best Ind.:', best_ind print 'Best Fitness:', best_ind.fitness.values[0] if testing: print 'Test fitness:',best_ind.fitness_test.values[0] print 'Avg Nodes:', avg_nodes(population) print 'Evaluations: ', funcEval.cont_evalp if SaveMatrix: data_pop=avg_nodes(population) if GenMatrix: idx_aux = np.searchsorted(Matrix[:, 0], gen) Matrix[idx_aux, 1] = best_ind.fitness.values[0] if testing: Matrix[idx_aux, 2] = best_ind.fitness_test.values[0] else: Matrix[idx_aux, 2] = None Matrix[idx_aux, 3] = len(best_ind) Matrix[idx_aux, 4] = data_pop[0] Matrix[idx_aux, 5] = gen Matrix[idx_aux, 6] = 1 Matrix[idx_aux, 7] = data_pop[1] # max nodes Matrix[idx_aux, 8] = data_pop[2] # min nodes if neat_alg: Matrix[idx_aux, 9] = best_ind.get_specie() Matrix[idx_aux, 10] = max(ind_specie(population), key=lambda x: x[0])[0] else: if funcEval.cont_evalp >= cont_evalf: num_c -= 1 idx_aux = num_c Matrix[num_c, 1] = best_ind.fitness.values[0] if testing: Matrix[num_c, 2] = best_ind.fitness_test.values[0] else: Matrix[num_c, 2] = None Matrix[num_c, 3] = len(best_ind) Matrix[num_c, 4] = data_pop[0] Matrix[num_c, 5] = gen Matrix[num_c, 6] = 1 Matrix[num_c, 7] = data_pop[1] # max_nodes Matrix[num_c, 8] = data_pop[2] # min nodes if neat_alg: Matrix[num_c, 9] = max(ind_specie(population), key=lambda x: x[0])[0] else: idx_aux = np.searchsorted(Matrix[:, 0], funcEval.cont_evalp) Matrix[idx_aux, 1] = best_ind.fitness.values[0] if testing: Matrix[idx_aux, 2] = best_ind.fitness_test.values[0] else: Matrix[idx_aux, 2] = None Matrix[idx_aux, 3] = len(best_ind) Matrix[idx_aux, 4] = data_pop[0] Matrix[idx_aux, 5] = gen Matrix[idx_aux, 6] = 1 Matrix[idx_aux, 7] = data_pop[1] # max nodes Matrix[idx_aux, 8] = data_pop[2] # min nodes if neat_alg: Matrix[idx_aux, 9] = max(ind_specie(population), key=lambda x: x[0])[0] id_it = idx_aux-1 id_beg = 0 flag = True flag2 = False while flag: if Matrix[id_it, 6] == 0: id_it -= 1 flag2 = True else: id_beg = id_it flag = False if flag2: x = Matrix[id_beg, 1:8] Matrix[id_beg:idx_aux, 1:] = Matrix[id_beg, 1:] np.savetxt('./Matrix/%s/idx_%d_%d.txt' % (problem, num_p, n_corr), Matrix, delimiter=",", fmt="%s") end_t = time.time() if testing: time_file.write('\n%s;%s;%s;%s;%s;%s' % (gen, begin, end_t, str(round(end_t - begin, 2)), best_ind.fitness.values[0], best_ind.fitness_test.values[0])) else: time_file.write('\n%s;%s;%s;%s;%s' % ( gen, begin, end_t, str(round(end_t - begin, 2)), best_ind.fitness.values[0])) return population, logbook
def evo_species(population, neat_h): species(population, neat_h) num_Species=count_species(population) specie_list=list_species(population) return num_Species, specie_list
def neat_GP(population, toolbox, cxpb, mutpb, ngen, neat_alg, neat_cx, neat_h, neat_pelit, n_corr, num_p, params, problem, beta, stats=None, halloffame=None, verbose=__debug__): """This algorithm reproduce the simplest evolutionary algorithm as presented in chapter 7 of [Back2000]_. :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param cxpb: The probability of mating two individuals. :param mutpb: The probability of mutating an individual. :param ngen: The number of generation. :param neat_alg: wheter or not to use species stuff. :param neat_cx: wheter or not to use neatGP cx :param neat_h: indicate the distance allowed between each specie :param neat_pelit: probability of being elitist, it's used in the neat cx and mutation :param n_corr: run number just to wirte the txt file :param num_p: problem number just to wirte the txt file :param params:indicate the params for the fitness sharing, the diffetent options are: -DontPenalize(str): 'best_specie' or 'best_of_each_specie' -Penalization_method(int): 1.without penalization 2.penalization fitness sharing 3.new penalization -ShareFitness(str): 'yes' or 'no' :param problem: (str) name of the problem. :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population. It uses :math:`\lambda = \kappa = \mu` and goes as follow. It first initializes the population (:math:`P(0)`) by evaluating every individual presenting an invalid fitness. Then, it enters the evolution loop that begins by the selection of the :math:`P(g+1)` population. Then the crossover operator is applied on a proportion of :math:`P(g+1)` according to the *cxpb* probability, the resulting and the untouched individuals are placed in :math:`P'(g+1)`. Thereafter, a proportion of :math:`P'(g+1)`, determined by *mutpb*, is mutated and placed in :math:`P''(g+1)`, the untouched individuals are transferred :math:`P''(g+1)`. Finally, those new individuals are evaluated and the evolution loop continues until *ngen* generations are completed. Briefly, the operators are applied in the following order :: evaluate(population) for i in range(ngen): offspring = select(population) offspring = mate(offspring) offspring = mutate(offspring) evaluate(offspring) population = offspring This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. .. [Back2000] Back, Fogel and Michalewicz, "Evolutionary Computation 1 : Basic Algorithms and Operators", 2000. """ d = './Results/%s/bestind_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) best = open(d, 'w') # save data d = './Results/%s/bestind_string_%d_%d.txt' % (problem, num_p, n_corr) ensure_dir(d) best_st = open(d, 'w') logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) if neat_alg: # assign specie to each individual on the population species(population, neat_h, beta) ind_specie(population) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # take the best on the population best_ind = best_pop(population) fitnesst_best = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesst_best[0] best.write('\n%s;%s;%s;%s;%s' % (0, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) best_st.write('\n%s;%s' % (0, best_ind)) if neat_alg: # applying fitness sharing SpeciesPunishment(population, params, neat_h) if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print(logbook.stream) # Begin the generational process for gen in range(1, ngen + 1): best_ind = copy.deepcopy(best_pop(population)) if neat_alg: # select set of parents parents = p_selection(population, gen) else: parents = toolbox.select(population, len(population)) if neat_cx: # applying neat-crossover n = len(parents) mut = 1 cx = 1 offspring = neatGP(toolbox, parents, cxpb, mutpb, n, mut, cx, neat_pelit) else: offspring = varOr(parents, toolbox, cxpb, mutpb) if neat_alg: # Assign species specie_parents_child(parents, offspring, neat_h, beta) offspring[:] = parents + offspring ind_specie(offspring) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit else: invalid_ind = [ind for ind in offspring] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit orderbyfit = sorted(offspring, key=lambda ind: ind.fitness.values) if best_ind.fitness.values[0] <= orderbyfit[0].fitness.values[0]: offspring[:] = [best_ind] + orderbyfit[:len(population) - 1] if neat_alg: SpeciesPunishment(offspring, params, neat_h) # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} logbook.record(gen=gen, nevals=len(population), **record) if verbose: print(logbook.stream) best_ind = best_pop(population) fitnesses_test = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesses_test[0] best.write( '\n%s;%s;%s;%s;%s' % (gen, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) best_st.write('\n%s;%s' % (gen, best_ind)) return population, logbook
def evo_species(population, neat_h): species(population, neat_h, version=3, beta=0.5) num_Species = count_species(population) specie_list = list_species(population) return num_Species, specie_list
def neat_GP_LS(population, toolbox, cxpb, mutpb, ngen, neat_alg, neat_cx, neat_h,neat_pelit, LS_flag, LS_select, cont_evalf, num_salto, SaveMatrix, GenMatrix, pset,n_corr, num_p, params, direccion, problem,stats=None, halloffame=None, verbose=__debug__): """This algorithm reproduce the simplest evolutionary algorithm as presented in chapter 7 of [Back2000]_. :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param cxpb: The probability of mating two individuals. :param mutpb: The probability of mutating an individual. :param ngen: The number of generation. :param neat_alg: wheter or not to use species stuff. :param neat_cx: wheter or not to use neatGP cx :param neat_h: indicate the distance allowed between each specie :param neat_pelit: probability of being elitist, it's used in the neat cx and mutation :param LS_flag: wheter or not to use LocalSearchGP :param LS_select: indicate the kind of selection to use the LSGP on the population. :param cont_evalf: contador maximo del numero de evaluaciones :param n_corr: run number just to wirte the txt file :param p: problem number just to wirte the txt file :param params:indicate the params for the fitness sharing, the diffetent options are: -DontPenalize(str): 'best_specie' or 'best_of_each_specie' -Penalization_method(int): 1.without penalization 2.penalization fitness sharing 3.new penalization -ShareFitness(str): 'yes' or 'no' :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population. It uses :math:`\lambda = \kappa = \mu` and goes as follow. It first initializes the population (:math:`P(0)`) by evaluating every individual presenting an invalid fitness. Then, it enters the evolution loop that begins by the selection of the :math:`P(g+1)` population. Then the crossover operator is applied on a proportion of :math:`P(g+1)` according to the *cxpb* probability, the resulting and the untouched individuals are placed in :math:`P'(g+1)`. Thereafter, a proportion of :math:`P'(g+1)`, determined by *mutpb*, is mutated and placed in :math:`P''(g+1)`, the untouched individuals are transferred :math:`P''(g+1)`. Finally, those new individuals are evaluated and the evolution loop continues until *ngen* generations are completed. Briefly, the operators are applied in the following order :: evaluate(population) for i in range(ngen): offspring = select(population) offspring = mate(offspring) offspring = mutate(offspring) evaluate(offspring) population = offspring This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. .. [Back2000] Back, Fogel and Michalewicz, "Evolutionary Computation 1 : Basic Algorithms and Operators", 2000. """ logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) pop_file = open('./Results/%s/pop_file_%d_%d.txt' % (problem, num_p, n_corr), 'a') if SaveMatrix: # Saving data in matrix num_r = 9 if GenMatrix: num_salto=1 num_c=ngen+1 Matrix= np.empty((num_c, num_r,)) vector = np.arange(0, num_c, num_salto) else: num_c = (cont_evalf/num_salto) + 1 Matrix = np.empty((num_c, num_r,)) vector = np.arange(1, cont_evalf+num_salto, num_salto) for i in range(len(vector)): Matrix[i, 0] = vector[i] #num_r-1 Matrix[:, 6] = 0. #Creation of the species if neat_alg: species(population,neat_h) ind_specie(population) if funcEval.LS_flag: for ind in population: sizep = len(ind)+2 param_ones = np.ones(sizep) param_ones[0] = 0 ind.params_set(param_ones) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit best = open('./Results/%s/bestind_%d_%d.txt' % (problem, num_p, n_corr), 'a') # save data best_ind = best_pop(population) # best individual of the population fitnesst_best = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesst_best[0] best.write('\n%s;%s;%s;%s;%s;%s' % (0, funcEval.cont_evalp, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) data_pop=avg_nodes(population) if SaveMatrix: idx = 0 Matrix[idx, 1] = best_ind.fitness.values[0] Matrix[idx, 2] = best_ind.fitness_test.values[0] Matrix[idx, 3] = len(best_ind) Matrix[idx, 4] = data_pop[0] Matrix[idx, 5] = 0. Matrix[idx, 6] = 1 # just an id to know if the current row is full Matrix[idx, 7] = data_pop[1] # max size Matrix[idx, 8] = data_pop[2] # min size np.savetxt('./Matrix/%s/idx_%d_%d.txt' % (problem,num_p, n_corr), Matrix, delimiter=",", fmt="%s") if neat_alg: SpeciesPunishment(population,params,neat_h) out = open('./Results/%s/bestind_str_%d_%d.txt' % (problem, num_p, n_corr), 'a') if funcEval.LS_flag == 1: strg = best_ind.__str__() l_strg = add_subt_cf(strg, args=[]) c = tree2f() cd = c.convert(l_strg) out.write('\n%s;%s;%s;%s;%s;%s' % (0, len(best_ind), best_ind.LS_applied_get(), best_ind.get_params(), cd, best_ind)) else: out.write('\n%s;%s;%s' % (0, len(best_ind), best_ind)) for ind in population: pop_file.write('\n%s;%s'%(ind.fitness.values[0], ind)) ls_type = '' if LS_select == 1: ls_type = 'LSHS' elif LS_select == 2: ls_type = 'Best-Sp' elif LS_select == 3: ls_type = 'LSHS-Sp' elif LS_select == 4: ls_type = 'Best-Pop' elif LS_select == 5: ls_type = 'All-Pop' elif LS_select == 6: ls_type = 'LSHS-test' elif LS_select == 7: ls_type = 'Best set' elif LS_select == 8: ls_type = 'Random set' elif LS_select == 9: ls_type = "Best-Random set" print '---- Generation %d -----' % (0) print 'Problem: ', problem print 'Problem No.: ', num_p print 'Run No.: ', n_corr print 'neat-GP:', neat_alg print 'neat-cx:', neat_cx print 'Local Search:', funcEval.LS_flag if funcEval.LS_flag: print 'Local Search Heuristic: %s (%s)' % (LS_select,ls_type) print 'Best Ind.:', best_ind print 'Best Fitness:', best_ind.fitness.values[0] print 'Test fitness:',best_ind.fitness_test.values[0] print 'Avg Nodes:', avg_nodes(population) print 'Evaluations: ', funcEval.cont_evalp # Begin the generational process for gen in range(1, ngen+1): if funcEval.cont_evalp > cont_evalf: break print '---- Generation %d -----' % (gen) print 'Problem: ', problem print 'Problem No.: ', num_p print 'Run No.: ', n_corr print 'neat-GP:', neat_alg print 'neat-cx:', neat_cx print 'Local Search:', funcEval.LS_flag if funcEval.LS_flag: print 'Local Search Heuristic: %s (%s)' % (LS_select, ls_type) best_ind = copy.deepcopy(best_pop(population)) if neat_alg: parents = p_selection(population, gen) else: parents = toolbox.select(population, len(population)) if neat_cx: n = len(parents) mut = 1 cx = 1 offspring = neatGP(toolbox, parents, cxpb, mutpb, n, mut, cx, neat_pelit) else: offspring = varOr(parents, toolbox, cxpb, mutpb) if neat_alg: specie_parents_child(parents,offspring, neat_h) offspring[:] = parents+offspring ind_specie(offspring) invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit else: invalid_ind = [ind for ind in offspring] if funcEval.LS_flag: new_invalid_ind = [] for ind in invalid_ind: strg = ind.__str__() l_strg = add_subt(strg, ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fitness_ls = toolbox.map(toolbox.evaluate, new_invalid_ind) for ind, ls_fit in zip(invalid_ind, fitness_ls): funcEval.cont_evalp += 1 ind.fitness.values = ls_fit else: fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): funcEval.cont_evalp += 1 ind.fitness.values = fit orderbyfit = sorted(offspring, key=lambda ind:ind.fitness.values) print len(orderbyfit),len(best_ind) if best_ind.fitness.values[0] <= orderbyfit[0].fitness.values[0]: offspring[:] = [best_ind]+orderbyfit[:len(population)-1] if neat_alg: SpeciesPunishment(offspring, params, neat_h) population[:] = offspring # population update cond_ind = 0 cont_better=0 if funcEval.LS_flag: for ind in population: ind.LS_applied_set(0) if LS_select == 1: trees_h(population, num_p, n_corr, pset, direccion) elif LS_select == 2: best_specie(population, num_p, n_corr, pset, direccion) elif LS_select == 3: specie_h(population, num_p, n_corr, pset, direccion) elif LS_select == 4: best_pop_ls(population, num_p, n_corr, pset, direccion) elif LS_select == 5: all_pop(population, num_p, n_corr, pset, direccion) elif LS_select == 6: trees_h_wo(population, num_p, n_corr, pset, direccion) elif LS_select == 7: ls_bestset(population, num_p, n_corr, pset, direccion) elif LS_select == 8: ls_random(population, num_p, n_corr, pset, direccion) elif LS_select == 9: ls_randbestset(population, num_p, n_corr, pset, direccion) # invalid_ind = [ind for ind in population] new_invalid_ind = [] for ind in population: strg = ind.__str__() l_strg = add_subt(strg, ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fitness_ls = toolbox.map(toolbox.evaluate, new_invalid_ind) print 'Fitness comp.:', for ind, ls_fit in zip(invalid_ind, fitness_ls): if ind.LS_applied_get() == 1: cond_ind += 1 if ind.fitness.values[0] < ls_fit: print '-', elif ind.fitness.values[0] > ls_fit: cont_better += 1 print '+', elif ind.fitness.values[0] == ls_fit: print '=', funcEval.cont_evalp += 1 ind.fitness.values = ls_fit print '' pop_file.write('\n----------------------------------------%s'%(gen)) for ind in population: pop_file.write('\n%s;%s;%s;%s'%(ind.LS_applied_get(),ind.fitness.values[0], ind, [x for x in ind.get_params()])) else: pop_file.write('\n----------------------------------------') for ind in population: pop_file.write('\n%s;%s;%s;%s;%s;%s'%(ind.LS_applied_get(),ind.LS_story_get(),ind.off_cx_get(),ind.off_mut_get(),ind.fitness.values[0], ind)) best_ind = best_pop(population) if funcEval.LS_flag: strg = best_ind.__str__() l_strg = add_subt(strg, best_ind) c = tree2f() cd = c.convert(l_strg) new_invalid_ind.append(cd) fit_best = toolbox.map(toolbox.evaluate_test, [cd]) best_ind.fitness_test.values = fit_best[0] best.write('\n%s;%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, best_ind.fitness.values[0], best_ind.LS_fitness_get(), best_ind.fitness_test.values[0], len(best_ind), avg_nodes(population))) out.write('\n%s;%s;%s;%s;%s;%s' % (gen, len(best_ind), best_ind.LS_applied_get(), best_ind.get_params(), cd, best_ind)) else: fitnesses_test = toolbox.map(toolbox.evaluate_test, [best_ind]) best_ind.fitness_test.values = fitnesses_test[0] best.write('\n%s;%s;%s;%s;%s;%s' % (gen, funcEval.cont_evalp, best_ind.fitness_test.values[0], best_ind.fitness.values[0], len(best_ind), avg_nodes(population))) out.write('\n%s;%s;%s' % (gen, len(best_ind), best_ind)) if funcEval.LS_flag: print 'Num. LS:', cond_ind print 'Ind. Improvement:', cont_better print 'Best Ind. LS:', best_ind.LS_applied_get() print 'Best Ind.:', best_ind print 'Best Fitness:', best_ind.fitness.values[0] print 'Test fitness:',best_ind.fitness_test.values[0] print 'Avg Nodes:', avg_nodes(population) print 'Evaluations: ', funcEval.cont_evalp if SaveMatrix: data_pop=avg_nodes(population) if GenMatrix: idx_aux = np.searchsorted(Matrix[:, 0], gen) Matrix[idx_aux, 1] = best_ind.fitness.values[0] Matrix[idx_aux, 2] = best_ind.fitness_test.values[0] Matrix[idx_aux, 3] = len(best_ind) Matrix[idx_aux, 4] = data_pop[0] Matrix[idx_aux, 5] = gen Matrix[idx_aux, 6] = 1 Matrix[idx_aux, 7] = data_pop[1] # max nodes Matrix[idx_aux, 8] = data_pop[2] # min nodes else: if funcEval.cont_evalp >= cont_evalf: num_c -= 1 idx_aux=num_c Matrix[num_c, 1] = best_ind.fitness.values[0] Matrix[num_c, 2] = best_ind.fitness_test.values[0] Matrix[num_c, 3] = len(best_ind) Matrix[num_c, 4] = data_pop[0] Matrix[num_c, 5] = gen Matrix[num_c, 6] = 1 Matrix[num_c, 7] = data_pop[1] #max_nodes Matrix[num_c, 8] = data_pop[2] #min nodes else: idx_aux = np.searchsorted(Matrix[:, 0], funcEval.cont_evalp) Matrix[idx_aux, 1] = best_ind.fitness.values[0] Matrix[idx_aux, 2] = best_ind.fitness_test.values[0] Matrix[idx_aux, 3] = len(best_ind) Matrix[idx_aux, 4] = data_pop[0] Matrix[idx_aux, 5] = gen Matrix[idx_aux, 6] = 1 Matrix[idx_aux, 7] = data_pop[1] #max nodes Matrix[idx_aux, 8] = data_pop[2] #min nodes id_it = idx_aux-1 id_beg = 0 flag = True flag2 = False while flag: if Matrix[id_it, 6] == 0: id_it -= 1 flag2 = True else: id_beg = id_it flag = False if flag2: x = Matrix[id_beg, 1:8] Matrix[id_beg:idx_aux, 1:] = Matrix[id_beg, 1:] np.savetxt('./Matrix/%s/idx_%d_%d.txt' % (problem, num_p, n_corr), Matrix, delimiter=",", fmt="%s") return population, logbook