def average_position(structure=None, models=None, sim=None): """Shift the given structural object to the average position. @keyword structure: The structural object to operate on. @type structure: lib.structure.internal.object.Internal instance @keyword models: The list of models to shift. @type models: list of int @keyword sim: A flag which if True will use the Monte Carlo simulation results. In this case, the model list should be set to the simulation indices plus 1 and the structural object should have one model per simulation already set up. @type sim: bool """ # The selection object. selection = structure.selection(atom_id=domain_moving()) # Loop over each model. for i in range(len(models)): # First rotate the moving domain to the average position. R = zeros((3, 3), float64) if hasattr(cdp, 'ave_pos_alpha'): if sim: euler_to_R_zyz(cdp.ave_pos_alpha_sim[i], cdp.ave_pos_beta_sim[i], cdp.ave_pos_gamma_sim[i], R) else: euler_to_R_zyz(cdp.ave_pos_alpha, cdp.ave_pos_beta, cdp.ave_pos_gamma, R) else: if sim: euler_to_R_zyz(0.0, cdp.ave_pos_beta_sim[i], cdp.ave_pos_gamma_sim[i], R) else: euler_to_R_zyz(0.0, cdp.ave_pos_beta, cdp.ave_pos_gamma, R) origin = pipe_centre_of_mass(atom_id=domain_moving(), verbosity=0, missing_error=False) structure.rotate(R=R, origin=origin, model=models[i], selection=selection) # Then translate the moving domain. if sim: T = [ cdp.ave_pos_x_sim[i], cdp.ave_pos_y_sim[i], cdp.ave_pos_z_sim[i] ] else: T = [cdp.ave_pos_x, cdp.ave_pos_y, cdp.ave_pos_z] structure.translate(T=T, model=models[i], selection=selection)
def base_data_loop(self): """Generator method for looping over the base data - RDCs and PCSs. This loop yields the following: - The RDC identification data for the interatomic data container and alignment. - The PCS identification data for the spin data container and alignment. @return: The base data type ('rdc' or 'pcs'), the spin or interatomic data container information (either one or two spin hashes), and the alignment ID string. @rtype: list of str """ # Loop over the interatomic data containers for the moving domain (for the RDC data). for interatom in interatomic_loop(selection1=domain_moving()): # Skip deselected containers. if not interatom.select: continue # No RDC, so skip. if not hasattr(interatom, 'rdc'): continue # Loop over the alignment IDs. for align_id in cdp.rdc_ids: # Yield the info set. if align_id in interatom.rdc and interatom.rdc[ align_id] != None: yield [ 'rdc', interatom._spin_hash1, interatom._spin_hash2, align_id ] # Loop over the spin containers for the moving domain (for the PCS data). for spin, spin_id in spin_loop(selection=domain_moving(), return_id=True): # Skip deselected spins. if not spin.select: continue # No PCS, so skip. if not hasattr(spin, 'pcs'): continue # Loop over the alignment IDs. for align_id in cdp.pcs_ids: # Yield the info set. if align_id in spin.pcs and spin.pcs[align_id] != None: yield ['pcs', spin_id, align_id]
def overfit_deselect(self, data_check=True, verbose=True): """Deselect spins which have insufficient data to support minimisation. @keyword data_check: A flag to signal if the presence of base data is to be checked for. @type data_check: bool @keyword verbose: A flag which if True will allow printouts. @type verbose: bool """ # Nothing to do. if not data_check: return # Loop over spin data, checking for PCS data. ids = [] for spin, spin_id in spin_loop(return_id=True, skip_desel=True): if not hasattr(spin, 'pcs'): spin.select = False ids.append(spin_id) if verbose and len(ids): warn(RelaxWarning("No PCS data is present, deselecting the spins %s." % ids)) # Loop over the interatomic data containers, checking for RDC data. ids = [] for interatom in interatomic_loop(selection1=domain_moving()): if not hasattr(interatom, 'rdc'): interatom.select = False ids.append("%s - %s" % (interatom.spin_id1, interatom.spin_id2)) if verbose and len(ids): warn(RelaxWarning("No RDC data is present, deselecting the interatomic data containers between spin pairs %s." % ids))
def base_data_loop(self): """Generator method for looping over the base data - RDCs and PCSs. This loop yields the following: - The RDC identification data for the interatomic data container and alignment. - The PCS identification data for the spin data container and alignment. @return: The base data type ('rdc' or 'pcs'), the spin or interatomic data container information (either one or two spin IDs), and the alignment ID string. @rtype: list of str """ # Loop over the interatomic data containers for the moving domain (for the RDC data). for interatom in interatomic_loop(selection1=domain_moving()): # Skip deselected containers. if not interatom.select: continue # No RDC, so skip. if not hasattr(interatom, 'rdc'): continue # Loop over the alignment IDs. for align_id in cdp.rdc_ids: # Yield the info set. if align_id in interatom.rdc and interatom.rdc[align_id] != None: yield ['rdc', interatom.spin_id1, interatom.spin_id2, align_id] # Loop over the spin containers for the moving domain (for the PCS data). for spin, spin_id in spin_loop(selection=domain_moving(), return_id=True): # Skip deselected spins. if not spin.select: continue # No PCS, so skip. if not hasattr(spin, 'pcs'): continue # Loop over the alignment IDs. for align_id in cdp.pcs_ids: # Yield the info set. if align_id in spin.pcs and spin.pcs[align_id] != None: yield ['pcs', spin_id, align_id]
def average_position(structure=None, models=None, sim=None): """Shift the given structural object to the average position. @keyword structure: The structural object to operate on. @type structure: lib.structure.internal.object.Internal instance @keyword models: The list of models to shift. @type models: list of int @keyword sim: A flag which if True will use the Monte Carlo simulation results. In this case, the model list should be set to the simulation indices plus 1 and the structural object should have one model per simulation already set up. @type sim: bool """ # The selection object. selection = structure.selection(atom_id=domain_moving()) # Loop over each model. for i in range(len(models)): # First rotate the moving domain to the average position. R = zeros((3, 3), float64) if hasattr(cdp, 'ave_pos_alpha'): if sim: euler_to_R_zyz(cdp.ave_pos_alpha_sim[i], cdp.ave_pos_beta_sim[i], cdp.ave_pos_gamma_sim[i], R) else: euler_to_R_zyz(cdp.ave_pos_alpha, cdp.ave_pos_beta, cdp.ave_pos_gamma, R) else: if sim: euler_to_R_zyz(0.0, cdp.ave_pos_beta_sim[i], cdp.ave_pos_gamma_sim[i], R) else: euler_to_R_zyz(0.0, cdp.ave_pos_beta, cdp.ave_pos_gamma, R) origin = pipe_centre_of_mass(atom_id=domain_moving(), verbosity=0, missing_error=False) structure.rotate(R=R, origin=origin, model=models[i], selection=selection) # Then translate the moving domain. if sim: T = [cdp.ave_pos_x_sim[i], cdp.ave_pos_y_sim[i], cdp.ave_pos_z_sim[i]] else: T = [cdp.ave_pos_x, cdp.ave_pos_y, cdp.ave_pos_z] structure.translate(T=T, model=models[i], selection=selection)
def overfit_deselect(self, data_check=True, verbose=True): """Deselect spins which have insufficient data to support minimisation. @keyword data_check: A flag to signal if the presence of base data is to be checked for. @type data_check: bool @keyword verbose: A flag which if True will allow printouts. @type verbose: bool """ # Nothing to do. if not data_check: return # Loop over spin data, checking for PCS data. ids = [] for spin, spin_id in spin_loop(return_id=True, skip_desel=True): if not hasattr(spin, 'pcs'): spin.select = False ids.append(spin_id) if verbose and len(ids): warn( RelaxWarning( "No PCS data is present, deselecting the spins %s." % ids)) # Loop over the interatomic data containers, checking for RDC data. ids = [] for interatom in interatomic_loop(selection1=domain_moving()): if not hasattr(interatom, 'rdc'): interatom.select = False ids.append("%s - %s" % (interatom.spin_id1, interatom.spin_id2)) if verbose and len(ids): warn( RelaxWarning( "No RDC data is present, deselecting the interatomic data containers between spin pairs %s." % ids))
def distribute(file="distribution.pdb.bz2", dir=None, atom_id=None, total=1000, max_rotations=100000, model=1, force=True): """Create a uniform distribution of structures for the frame order motions. @keyword file: The PDB file for storing the frame order motional distribution. The compression is determined automatically by the file extensions '*.pdb', '*.pdb.gz', and '*.pdb.bz2'. @type file: str @keyword dir: The directory name to place the file into. @type dir: str or None @keyword atom_id: The atom identification string to allow the distribution to be a subset of all atoms. @type atom_id: None or str @keyword total: The total number of states/model/structures in the distribution. @type total: int @keyword max_rotations: The maximum number of rotations to generate the distribution from. This prevents an execution for an infinite amount of time when a frame order amplitude parameter is close to zero so that the subset of all rotations within the distribution is close to zero. @type max_rotations: int @keyword model: Only one model from an analysed ensemble of structures can be used for the distribution, as the corresponding PDB file consists of one model per state. @type model: int @keyword force: A flag which, if set to True, will overwrite the any pre-existing file. @type force: bool """ # Printout. print("Uniform distribution of structures representing the frame order motions.") # Check the total. if total > 9999: raise RelaxError("A maximum of 9999 models is allowed in the PDB format.") # Checks. check_pipe() check_model() check_domain() check_parameters() check_pivot() # Skip the rigid model. if cdp.model == MODEL_RIGID: print("Skipping the rigid model.") return # Open the output file. file = open_write_file(file_name=file, dir=dir, force=force) # The parameter values. values = assemble_param_vector() params = {} i = 0 for name in cdp.params: params[name] = values[i] i += 1 # The structure. structure = deepcopy(cdp.structure) if structure.num_models() > 1: structure.collapse_ensemble(model_num=model) # The pivot points. num_states = 1 if cdp.model == MODEL_DOUBLE_ROTOR: num_states = 2 pivot = zeros((num_states, 3), float64) for i in range(num_states): pivot[i] = generate_pivot(order=i+1, pdb_limit=True) # Shift to the average position. average_position(structure=structure, models=[None]) # The motional eigenframe. frame = generate_axis_system() # Only work with a subset. if atom_id: # The inverted selection. selection = structure.selection(atom_id=atom_id, inv=True) # Delete the data. structure.delete(selection=selection, verbosity=0) # Create the distribution. uniform_distribution(file=file, model=cdp.model, structure=structure, parameters=params, eigenframe=frame, pivot=pivot, atom_id=domain_moving(), total=total, max_rotations=max_rotations) # Close the file. file.close()
def simulate(file="simulation.pdb.bz2", dir=None, step_size=2.0, snapshot=10, total=1000, model=1, force=True): """Pseudo-Brownian dynamics simulation of the frame order motions. @keyword file: The PDB file for storing the frame order pseudo-Brownian dynamics simulation. The compression is determined automatically by the file extensions '*.pdb', '*.pdb.gz', and '*.pdb.bz2'. @type file: str @keyword dir: The directory name to place the file into. @type dir: str or None @keyword step_size: The rotation will be of a random direction but with this fixed angle. The value is in degrees. @type step_size: float @keyword snapshot: The number of steps in the simulation when snapshots will be taken. @type snapshot: int @keyword total: The total number of snapshots to take before stopping the simulation. @type total: int @keyword model: Only one model from an analysed ensemble of structures can be used for the pseudo-Brownian simulation, as the simulation and corresponding PDB file consists of one model per simulation. @type model: int @keyword force: A flag which, if set to True, will overwrite the any pre-existing file. @type force: bool """ # Printout. print("Pseudo-Brownian dynamics simulation of the frame order motions.") # Checks. check_pipe() check_model() check_domain() check_parameters() check_pivot() # Skip the rigid model. if cdp.model == MODEL_RIGID: print("Skipping the rigid model.") return # Open the output file. file = open_write_file(file_name=file, dir=dir, force=force) # The parameter values. values = assemble_param_vector() params = {} i = 0 for name in cdp.params: params[name] = values[i] i += 1 # The structure. structure = deepcopy(cdp.structure) if structure.num_models() > 1: structure.collapse_ensemble(model_num=model) # The pivot points. num_states = 1 if cdp.model == MODEL_DOUBLE_ROTOR: num_states = 2 pivot = zeros((num_states, 3), float64) for i in range(num_states): pivot[i] = generate_pivot(order=i+1, pdb_limit=True) # Shift to the average position. average_position(structure=structure, models=[None]) # The motional eigenframe. frame = generate_axis_system() # Create the distribution. brownian(file=file, model=cdp.model, structure=structure, parameters=params, eigenframe=frame, pivot=pivot, atom_id=domain_moving(), step_size=step_size, snapshot=snapshot, total=total) # Close the file. file.close()
def simulate(file="simulation.pdb.bz2", dir=None, step_size=2.0, snapshot=10, total=1000, model=1, force=True): """Pseudo-Brownian dynamics simulation of the frame order motions. @keyword file: The PDB file for storing the frame order pseudo-Brownian dynamics simulation. The compression is determined automatically by the file extensions '*.pdb', '*.pdb.gz', and '*.pdb.bz2'. @type file: str @keyword dir: The directory name to place the file into. @type dir: str or None @keyword step_size: The rotation will be of a random direction but with this fixed angle. The value is in degrees. @type step_size: float @keyword snapshot: The number of steps in the simulation when snapshots will be taken. @type snapshot: int @keyword total: The total number of snapshots to take before stopping the simulation. @type total: int @keyword model: Only one model from an analysed ensemble of structures can be used for the pseudo-Brownian simulation, as the simulation and corresponding PDB file consists of one model per simulation. @type model: int @keyword force: A flag which, if set to True, will overwrite the any pre-existing file. @type force: bool """ # Printout. print("Pseudo-Brownian dynamics simulation of the frame order motions.") # Checks. check_pipe() check_model() check_domain() check_parameters() check_pivot() # Skip the rigid model. if cdp.model == MODEL_RIGID: print("Skipping the rigid model.") return # Open the output file. file = open_write_file(file_name=file, dir=dir, force=force) # The parameter values. values = assemble_param_vector() params = {} i = 0 for name in cdp.params: params[name] = values[i] i += 1 # The structure. structure = deepcopy(cdp.structure) if structure.num_models() > 1: structure.collapse_ensemble(model_num=model) # The pivot points. num_states = 1 if cdp.model == MODEL_DOUBLE_ROTOR: num_states = 2 pivot = zeros((num_states, 3), float64) for i in range(num_states): pivot[i] = generate_pivot(order=i + 1, pdb_limit=True) # Shift to the average position. average_position(structure=structure, models=[None]) # The motional eigenframe. frame = generate_axis_system() # Create the distribution. brownian(file=file, model=cdp.model, structure=structure, parameters=params, eigenframe=frame, pivot=pivot, atom_id=domain_moving(), step_size=step_size, snapshot=snapshot, total=total) # Close the file. file.close()
def distribute(file="distribution.pdb.bz2", dir=None, atom_id=None, total=1000, max_rotations=100000, model=1, force=True): """Create a uniform distribution of structures for the frame order motions. @keyword file: The PDB file for storing the frame order motional distribution. The compression is determined automatically by the file extensions '*.pdb', '*.pdb.gz', and '*.pdb.bz2'. @type file: str @keyword dir: The directory name to place the file into. @type dir: str or None @keyword atom_id: The atom identification string to allow the distribution to be a subset of all atoms. @type atom_id: None or str @keyword total: The total number of states/model/structures in the distribution. @type total: int @keyword max_rotations: The maximum number of rotations to generate the distribution from. This prevents an execution for an infinite amount of time when a frame order amplitude parameter is close to zero so that the subset of all rotations within the distribution is close to zero. @type max_rotations: int @keyword model: Only one model from an analysed ensemble of structures can be used for the distribution, as the corresponding PDB file consists of one model per state. @type model: int @keyword force: A flag which, if set to True, will overwrite the any pre-existing file. @type force: bool """ # Printout. print( "Uniform distribution of structures representing the frame order motions." ) # Check the total. if total > 9999: raise RelaxError( "A maximum of 9999 models is allowed in the PDB format.") # Checks. check_pipe() check_model() check_domain() check_parameters() check_pivot() # Skip the rigid model. if cdp.model == MODEL_RIGID: print("Skipping the rigid model.") return # Open the output file. file = open_write_file(file_name=file, dir=dir, force=force) # The parameter values. values = assemble_param_vector() params = {} i = 0 for name in cdp.params: params[name] = values[i] i += 1 # The structure. structure = deepcopy(cdp.structure) if structure.num_models() > 1: structure.collapse_ensemble(model_num=model) # The pivot points. num_states = 1 if cdp.model == MODEL_DOUBLE_ROTOR: num_states = 2 pivot = zeros((num_states, 3), float64) for i in range(num_states): pivot[i] = generate_pivot(order=i + 1, pdb_limit=True) # Shift to the average position. average_position(structure=structure, models=[None]) # The motional eigenframe. frame = generate_axis_system() # Only work with a subset. if atom_id: # The inverted selection. selection = structure.selection(atom_id=atom_id, inv=True) # Delete the data. structure.delete(selection=selection, verbosity=0) # Create the distribution. uniform_distribution(file=file, model=cdp.model, structure=structure, parameters=params, eigenframe=frame, pivot=pivot, atom_id=domain_moving(), total=total, max_rotations=max_rotations) # Close the file. file.close()
def decompose(root="decomposed", dir=None, atom_id=None, model=1, force=True): """Structural representation of the individual frame order motional components. @keyword root: The file root for the PDB files created. Each motional component will be represented by a different PDB file appended with '_mode1.pdb', '_mode2.pdb', '_mode3.pdb', etc. @type root: str @keyword dir: The directory name to place the file into. @type dir: str or None @keyword atom_id: The atom identification string to allow the decomposition to be applied to subset of all atoms. @type atom_id: None or str @keyword model: Only one model from an analysed ensemble of structures can be used for the decomposition, as the corresponding PDB file consists of one model per state. @type model: int @keyword force: A flag which, if set to True, will overwrite the any pre-existing file. @type force: bool """ # Printout. print( "PDB representation of the individual components of the frame order motions." ) # Checks. check_pipe() check_model() check_domain() check_parameters() check_pivot() # Skip any unsupported models. unsupported = [MODEL_RIGID, MODEL_DOUBLE_ROTOR] if cdp.model in unsupported: print("Skipping the unsupported '%s' model." % cdp.model) return # Initialise the angle vector (cone opening angle 1, cone opening angle 2, torsion angle). angles = zeros(3, float64) # Cone opening. if cdp.model in MODEL_LIST_ISO_CONE: angles[0] = angles[1] = cdp.cone_theta elif cdp.model in MODEL_LIST_PSEUDO_ELLIPSE: angles[0] = cdp.cone_theta_y angles[1] = cdp.cone_theta_x # Non-zero torsion angle. if cdp.model in MODEL_LIST_FREE_ROTORS: angles[2] = pi elif cdp.model in MODEL_LIST_RESTRICTED_TORSION: angles[2] = cdp.cone_sigma_max # The motional eigenframe. frame = generate_axis_system() # Mode ordering from largest to smallest. indices = argsort(angles) angles = angles[indices[::-1]] frame = transpose(transpose(frame)[indices[::-1]]) # The pivot point. pivot = generate_pivot(order=1, pdb_limit=True) # Loop over each mode. for i in range(3): # Skip modes with no motion. if angles[i] < 1e-7: continue # Open the output file. file_name = "%s_mode%i.pdb" % (root, i + 1) file = open_write_file(file_name=file_name, dir=dir, force=force) # The structure. structure = deepcopy(cdp.structure) if structure.num_models() > 1: structure.collapse_ensemble(model_num=model) # Shift to the average position. average_position(structure=structure, models=[None]) # Create the representation. mode_distribution(file=file, structure=structure, axis=frame[:, i], angle=angles[i], pivot=pivot, atom_id=domain_moving()) # Close the file. file.close()