Example #1
0
    def updatePlots(self, model, reset=False):
        bulge_flux, disk_flux = create_model_images(model, self.flux.shape, self.psf)
        model_flux = bulge_flux + disk_flux
        
        x0 = model.x0.value - 1.0
        y0 = model.y0.value - 1.0
        pa, ell = ellipse_params(self.flux, x0, y0)
        pa = (90.0 + pa) * np.pi / 180.0
        ba = 1.0 - ell
        bins = np.arange(30)
        r = bins[:-1] + 0.5 
        
        obs_r = radialProfile(self.flux, bins, x0, y0, pa, ba, rad_scale=1.0)
        obs_r = np.log10(obs_r)

        mod_r = radialProfile(model_flux, bins, x0, y0, pa, ba, rad_scale=1.0)
        mod_r = np.log10(mod_r)

        bulge_r = radialProfile(bulge_flux, bins, x0, y0, pa, ba, rad_scale=1.0)
        bulge_r = np.log10(bulge_r)

        disk_r = radialProfile(disk_flux, bins, x0, y0, pa, ba, rad_scale=1.0)
        disk_r = np.log10(disk_r)

        obs_im = np.log10(self.flux)
        mod_im = np.log10(model_flux)
        res_im = obs_im - mod_im

        if reset:
            self.plotPanel.reset(self.plotTitle, obs_im, mod_im, res_im, r, obs_r, mod_r, bulge_r, disk_r)
        else:
            self.plotPanel.update(obs_im, mod_im, res_im, r, obs_r, mod_r, bulge_r, disk_r)
Example #2
0
flag_bad_1p = (t_1p['flag'] > 0.0) | (t_1p['chi2'] > 20.0)

box_radius = c.attrs['box_radius']
target_vd = c.attrs['target_vd']
PSF_FWHM = c.attrs['PSF_FWHM']
galaxyName = c.attrs['object_name']
flux_unit = c.attrs['flux_unit']
flag_bad = (t['flag'] > 0.0) | (t['chi2'] > 20.0)
flag_ok = ~flag_bad
fit_l_obs = t['wl']
masked_wl = load_line_mask('data/starlight/Mask.mE', fit_l_obs)

initial_params = np.array(c.initialParams, dtype=t.dtype)
initial_model = BDModel.fromParamVector(initial_params)
psf = moffat_psf(PSF_FWHM, c.attrs['PSF_beta'], size=c.attrs['PSF_size'])
bulge_model_im, disk_model_im = create_model_images(initial_model, c.total.f_obs.shape[1:], psf) 
bulge_model_im *= flux_unit
disk_model_im *= flux_unit

l1 = find_nearest_index(fit_l_obs, 5635.0)
x0 = t['x0'][0]
y0 = t['y0'][0]

total_im = c.total.f_obs[l1] * flux_unit
model_im = disk_model_im + bulge_model_im
residual_im = (total_im - model_im)  / total_im

colnames = [
            'I_e',
            'I_0',
            'r_e',
Example #3
0
logger.info('Beginning decomposition.')
decomp = IFSDecomposer()
logger.info('Model using PSF FWHM = %.2f ", beta = %.2f.' % (args.modelPsfFWHM, args.modelPsfBeta))
decomp.setSynthPSF(FWHM=args.modelPsfFWHM, beta=args.modelPsfBeta, size=15)
decomp.loadData(wl, full_ifs / flux_unit, full_ifs_noise / flux_unit, np.zeros_like(full_ifs, dtype='bool'))

swll, swlu = 5590.0, 5680.0
sl1 = find_nearest_index(decomp.wl, swll)
sl2 = find_nearest_index(decomp.wl, swlu)
qSignal, qNoise, qWl = decomp.getSpectraSlice(sl1, sl2)

logger.warn('Computing initial model (takes a LOT of time).')
t1 = time.time()
initial_model = bd_initial_model(qSignal, qNoise, decomp.PSF, quiet=False, cache_model_file=args.cacheModel)
bulge_image, disk_image = create_model_images(initial_model, qSignal.shape, decomp.PSF)
logger.warn('Initial model time: %.2f\n' % (time.time() - t1))

logger.debug('Plotting guessed initial model.')
vmin = np.log10(qSignal.min())
vmax = np.log10(qSignal.max())
fig = plt.figure(figsize=(8, 6))
gs = plt.GridSpec(2, 3, height_ratios=[2.0, 3.0])
ax = plt.subplot(gs[0,0])
ax.imshow(np.log10(qSignal), vmin=vmin, vmax=vmax)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title(r'Total')

ax = plt.subplot(gs[0,1])
ax.imshow(np.log10(bulge_image), vmin=vmin, vmax=vmax)
Example #4
0
imshape = (72,77)
ifsshape = (len(l_ssp),) + imshape
norm_y0 = norm_model.y0.value
norm_x0 = norm_model.x0.value
flagged = distance(imshape, norm_x0, norm_y0) > 32.0
noise = 0.05
flux_unit = 1e-16

logger.info('Creating original PSF (FWHM = %.2f ")' % args.truePsfFWHM)
original_PSF = gaussian_psf(args.truePsfFWHM, size=15)

logger.info('Creating model images.')
bulge_image = np.ma.empty(ifsshape)
disk_image = np.ma.empty(ifsshape)
for i, model in enumerate(original_models):
    bulge_image[i], disk_image[i] = create_model_images(model, imshape, original_PSF)
bulge_image[:,flagged] = np.ma.masked
disk_image[:,flagged] = np.ma.masked
model_image = bulge_image + disk_image
#model_noise = model_image * noise

logger.info('Creating IFS.')
bulge_spectra = bulge_image * (flux_unit * bulge_flux[..., np.newaxis, np.newaxis]) 
disk_spectra = disk_image * (flux_unit * disk_flux[..., np.newaxis, np.newaxis]) 
full_spectra = bulge_spectra + disk_spectra
full_noise = full_spectra * noise

# FIXME: How to add gaussian noise to spectra?
logger.info('Adding gaussian noise to IFS.')
tmp_noise = np.zeros(full_spectra.shape)
for i in xrange(ifsshape[0]):
Example #5
0
logger.info('Creating PSF (FWHM = %.2f ", beta = %.2f)' % (args.psfFWHM, args.psfBeta))
PSF = moffat_psf(args.psfFWHM, args.psfBeta, size=max(args.Nx, args.Ny))
# Pad image to avoid artifacts at the borders when convolving.
Ny_psf = PSF.shape[0]
Nx_psf = PSF.shape[1]
imshape_pad = (args.Ny + 2 * Ny_psf, args.Nx + 2 * Nx_psf)
ifsshape_pad = (len(l_ssp),) + imshape_pad
# Fix the model center for padded images.
norm_y0 = norm_model.y0.value + Ny_psf
norm_x0 = norm_model.x0.value + Nx_psf
norm_model.y0.setValue(norm_y0)
norm_model.x0.setValue(norm_x0)

t1 = time.clock()
logger.info("Creating bulge spectra (tau proportional to distance).")
bulge_image_pad, disk_image_pad = create_model_images(norm_model, imshape_pad, PSF=None)

bulge_r = get_bulge_distance(imshape_pad, norm_model)
bulge_ifs_pad = np.empty(ifsshape_pad)
tau_image_pad = np.empty(imshape_pad)
for i in xrange(imshape_pad[0]):
    for j in xrange(imshape_pad[1]):
        r = bulge_r[i, j]
        tau = tau_r(args.tau0, args.dtau_dr, r)
        if tau <= 1e-20:
            tau = 1e-20
        tau_image_pad[i, j] = tau
        bulge_sfh = SyntheticSFH(base.ageBase)
        bulge_sfh.addExp(base.ageBase.max(), tau, 1.0)
        bulge_spec = (f_ssp * bulge_sfh.massVector()[:, np.newaxis]).sum(axis=1).sum(axis=0)
        bulge_spec /= np.median(bulge_spec[wl_norm_window])
Example #6
0
logger.info('Beginning decomposition.')
decomp = IFSDecomposer()
logger.info('Model using PSF FWHM = %.2f ", beta = %.2f.' % (args.modelPsfFWHM, args.modelPsfBeta))
decomp.setSynthPSF(FWHM=args.modelPsfFWHM, beta=args.modelPsfBeta, size=15)
decomp.loadData(wl, full_ifs / flux_unit, full_ifs_noise / flux_unit, np.zeros_like(full_ifs, dtype='bool'))

swll, swlu = 5590.0, 5680.0
sl1 = find_nearest_index(decomp.wl, swll)
sl2 = find_nearest_index(decomp.wl, swlu)
qSignal, qNoise, qWl = decomp.getSpectraSlice(sl1, sl2)

logger.warn('Computing initial model (takes a LOT of time).')
t1 = time.time()
initial_model = bd_initial_model(qSignal, qNoise, decomp.PSF, quiet=False, cache_model_file=args.cacheModel)
bulge_image, disk_image = create_model_images(initial_model, qSignal.shape, PSF=decomp.PSF)
qSignal_model = bulge_image + disk_image
qSignal_residual = (qSignal - qSignal_model) / qSignal
bulge_image_nopsf, disk_image_nopsf = create_model_images(initial_model, qSignal.shape, PSF=None)
logger.warn('Initial model time: %.2f\n' % (time.time() - t1))

################################################################################
##########
########## Plot fitted morph. model 
##########
################################################################################
logger.debug('Plotting guessed initial model.')
vmin = np.log10(qSignal.min())
vmax = np.log10(qSignal.max())

fig = plt.figure(figsize=(width_in, 0.8 * width_in))