#own file imports
import helper_functions
import spectroscopy_cnn_model
import load_data
import numpy as np

normalize = sys.argv[1]

output_spectra_length = 300
spectra_file = 'spectra.npz'
experiment_model = 'exp42'

train_loader, test_loader, validation_loader = load_data.load_experiment_data(
    spectra_file, 'all', 1, 1, 1)
model = spectroscopy_cnn_model.create_network(output_spectra_length)

model.load_state_dict(
    torch.load('results/model_' + experiment_model + '.pth',
               map_location='cpu'))
model.eval()

predicted_spectra_training = []
predicted_spectra_testing = []
predicted_spectra_validation = []

with torch.no_grad():
    print("Predictions training data")

    for data, target in train_loader:
        output = model(data)
Example #2
0
coulomb_train, coulomb_test, energies_train, energies_test = train_test_split(
    coulomb, energies, test_size=1.0 - train_split, random_state=0)
coulomb_test, coulomb_val, energies_test, energies_val = train_test_split(
    coulomb_test, energies_test, test_size=val_test_split, random_state=0)


def relative_difference(prediction, label):
    dE = 30 / len(prediction)  #how many eV's one dE is
    numerator = np.sum(dE * np.power((label - prediction), 2))
    denominator = np.sum(dE * label)

    return 1 - np.sqrt(numerator) / denominator


validation_loader = load_data.load_experiment_data('spectra.npz', 'validation')
model = spectroscopy_cnn_model.create_network(300)

model.load_state_dict(torch.load('results/model_exp17.pth',
                                 map_location='cpu'))
model.eval()
rmse_accuracy = helper_functions.get_model_error(validation_loader, model,
                                                 True)

best_prediction = np.argmin(rmse_accuracy)
worst_prediction = np.argmax(rmse_accuracy)
median_prediction = rmse_accuracy.index(
    np.percentile(rmse_accuracy, 50, interpolation='nearest'))

index = 1836
index2 = 5670