def main(cluster_file, consensus_file):
    with mgf.read(consensus_file) as reader:
        for spectrum_dict in reader:
            peptide_seq = spectrum_dict['params']['title']
            precursor_mz = spectrum_dict['params']['pepmass'][0]
            precursor_charge = spectrum_dict['params']['charge'][0]
            cons_mz = spectrum_dict['m/z array']
            cons_intensity = spectrum_dict['intensity array']
            retention_time = float(spectrum_dict['params']['rtinseconds'])
            break
    cons_spec = sus.MsmsSpectrum(peptide_seq,
                                 precursor_mz=precursor_mz,
                                 precursor_charge=precursor_charge,
                                 mz=cons_mz,
                                 intensity=cons_intensity,
                                 retention_time=retention_time,
                                 peptide=peptide_seq)
    with mgf.read(cluster_file) as reader:
        for spectrum_dict in reader:
            precursor_mz = spectrum_dict['params']['pepmass'][0]
            precursor_charge = spectrum_dict['params']['charge'][0]
            mz = spectrum_dict['m/z array']
            intensity = spectrum_dict['intensity array']
            retention_time = float(spectrum_dict['params']['rtinseconds'])

        spectrum = sus.MsmsSpectrum(peptide_seq,
                                    precursor_mz=precursor_mz,
                                    precursor_charge=precursor_charge,
                                    mz=mz,
                                    intensity=intensity,
                                    retention_time=retention_time,
                                    peptide=peptide_seq)
        # Process the MS/MS spectrum.
        fragment_tol_mass = 10
        fragment_tol_mode = 'ppm'
        #    fragment_tol_mass = .5
        #    fragment_tol_mode = 'Da'
        spectrum = (spectrum.set_mz_range(
            min_mz=100, max_mz=1400).remove_precursor_peak(
                fragment_tol_mass, fragment_tol_mode).filter_intensity(
                    min_intensity=0.05, max_num_peaks=50).scale_intensity(
                        'root').annotate_peptide_fragments(fragment_tol_mass,
                                                           fragment_tol_mode,
                                                           ion_types='aby'))
    # Generate theoretical spec
    # Plot the MS/MS spectrum.
    fig, ax = plt.subplots(figsize=(12, 6))
    #    sup.spectrum(spectrum, ax=ax)
    sup.mirror(spectrum, tspec, ax=ax)
    plt.show()
    plt.close()
def plot_spectrum(identifier, precursor_mz, precursor_charge, mz, intensity,
                  retention_time, peptide):
    # identifier = spectrum_dict['params']['title']
    # precursor_mz = spectrum_dict['params']['pepmass'][0]
    # precursor_charge = spectrum_dict['params']['charge'][0]
    # mz = spectrum_dict['m/z array']
    # intensity = spectrum_dict['intensity array']
    # retention_time = float(spectrum_dict['params']['rtinseconds'])
    # peptide = 'WNQLQAFWGTGK'

    # Create the MS/MS spectrum.
    spectrum = sus.MsmsSpectrum(identifier,
                                precursor_mz=precursor_mz,
                                precursor_charge=precursor_charge,
                                mz=mz,
                                intensity=intensity,
                                retention_time=retention_time,
                                peptide=peptide)

    # Process the MS/MS spectrum.
    #    fragment_tol_mass = 10
    #    fragment_tol_mode = 'ppm'
    fragment_tol_mass = .5
    fragment_tol_mode = 'Da'
    spectrum = (spectrum.set_mz_range(
        min_mz=100, max_mz=1400).remove_precursor_peak(
            fragment_tol_mass, fragment_tol_mode).filter_intensity(
                min_intensity=0.05, max_num_peaks=50).scale_intensity(
                    'root').annotate_peptide_fragments(fragment_tol_mass,
                                                       fragment_tol_mode,
                                                       ion_types='aby'))
    # Generate theoretical spec
    ts = sus._get_theoretical_peptide_fragments(peptide)
    tmz = [frag.calc_mz for frag in ts]
    ti = [1.0 for _ in tmz]
    tspec = sus.MsmsSpectrum(identifier,
                             precursor_mz=precursor_mz,
                             precursor_charge=precursor_charge,
                             mz=tmz,
                             intensity=ti,
                             retention_time=retention_time,
                             peptide=peptide)
    # Plot the MS/MS spectrum.
    fig, ax = plt.subplots(figsize=(12, 6))
    #    sup.spectrum(spectrum, ax=ax)
    sup.mirror(spectrum, tspec, ax=ax)
    plt.show()
    plt.close()
Example #3
0
def test_init_modification_str():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    with pytest.raises(ValueError):
        spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity,
                              peptide='PEPTIDER', modifications={'bla': 42})
Example #4
0
def test_init_peptide():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    with pytest.raises(ValueError):
        spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity,
                              peptide='BJOUXZ')
def get_cluster_spectra(mgf_filename: str) -> Dict[str, sus.MsmsSpectrum]:
    """
    Read all spectra from the given MGF file corresponding to a single cluster.

    Parameters
    ----------
    mgf_filename : str
        The file name of the MGF file to be read.

    Returns
    -------
    Dict[str, sus.MsmsSpectrum]
        A dictionary with as keys the scan numbers and as values the
        corresponding spectra.
    """
    spectra = {}
    for spectrum_dict in mgf.read(mgf_filename):
        # TODO: Make sure the USI doesn't contain a peptide identification.
        cluster, usi = spectrum_dict['params']['title'].split(';')
        spectrum = sus.MsmsSpectrum(
            usi,
            spectrum_dict['params']['pepmass'][0],
            spectrum_dict['params']['charge'][0],
            spectrum_dict['m/z array'],
            spectrum_dict['intensity array'],
            retention_time=spectrum_dict['params']['rtinseconds'])
        spectrum.cluster = cluster
        if usi in spectra:
            raise ValueError(f'Non-unique USI: {usi}')
        spectra[usi] = spectrum
    return spectra
Example #6
0
def fraction_of_by(peptide_seq, precursor_mz, precursor_charge, mz, intensity):
    if not parser.fast_valid(peptide_seq):
        print("Invalid peptide sequence encountered", file=sys.stderr)
        return 0.0
    spec = sus.MsmsSpectrum(peptide_seq,
                            precursor_mz=precursor_mz,
                            precursor_charge=precursor_charge,
                            mz=mz,
                            intensity=intensity,
                            peptide=peptide_seq)
    fragment_tol_mass = 50
    fragment_tol_mode = 'ppm'
    spectrum = (spectrum.set_mz_range(
        min_mz=100, max_mz=1400).remove_precursor_peak(
            fragment_tol_mass,
            fragment_tol_mode).annotate_peptide_fragments(fragment_tol_mass,
                                                          fragment_tol_mode,
                                                          ion_types='by'))
    current, by_current = 0., 0.
    for ix in range(len(spectrum.intensity)):
        current += spectrum.intensity[ix]
        if spectrum.annotation[ix] != None:
            by_current += spectrum.intensity[ix]
    if current > 0.:
        return by_current / current
    else:
        return 0.0
Example #7
0
def _parse_spectrum(spectrum_dict: Dict) -> sus.MsmsSpectrum:
    """
    Parse the Pyteomics cluster dict.

    Parameters
    ----------
    spectrum_dict : Dict
        The Pyteomics cluster dict to be parsed.

    Returns
    -------
    MsmsSpectrum
        The parsed cluster.
    """
    spectrum_id = spectrum_dict['id']
    mz_array = spectrum_dict['m/z array']
    intensity_array = spectrum_dict['intensity array']
    retention_time = spectrum_dict['scanList']['scan'][0]['scan start time']

    precursor = spectrum_dict['precursorList']['precursor'][0]
    precursor_ion = precursor['selectedIonList']['selectedIon'][0]
    precursor_mz = precursor_ion['selected ion m/z']
    if 'charge state' in precursor_ion:
        precursor_charge = int(precursor_ion['charge state'])
    elif 'possible charge state' in precursor_ion:
        precursor_charge = int(precursor_ion['possible charge state'])
    else:
        raise ValueError('Unknown precursor charge')

    return sus.MsmsSpectrum(spectrum_id, precursor_mz, precursor_charge,
                            mz_array, intensity_array, None, retention_time)
def _parse_ms2lda(usi: str) -> Tuple[sus.MsmsSpectrum, str]:
    match = _match_usi(usi)
    ms2lda_task_match = ms2lda_task_pattern.match(match.group(2))
    if ms2lda_task_match is None:
        raise UsiError("Incorrectly formatted MS2LDA task", 400)
    experiment_id = ms2lda_task_match.group(1)
    index_flag = match.group(3)
    if index_flag.lower() != "accession":
        raise UsiError("Currently supported MS2LDA index flags: accession",
                       400)
    index = match.group(4)
    try:
        lookup_request = requests.get(
            f"{MS2LDA_SERVER}get_doc/?experiment_id={experiment_id}"
            f"&document_id={index}",
            timeout=timeout,
        )
        lookup_request.raise_for_status()
        spectrum_dict = json.loads(lookup_request.text)
        if "error" in spectrum_dict:
            raise UsiError(f'MS2LDA error: {spectrum_dict["error"]}', 404)
        mz, intensity = zip(*spectrum_dict["peaks"])
        source_link = f"http://ms2lda.org/basicviz/show_doc/{index}/"

        spectrum = sus.MsmsSpectrum(usi, float(spectrum_dict["precursor_mz"]),
                                    0, mz, intensity)
        return spectrum, source_link
    except requests.exceptions.HTTPError:
        raise UsiError("Unknown MS2LDA USI", 404)
Example #9
0
def _parse_spectrum(spectrum_dict: Dict) -> sus.MsmsSpectrum:
    """
    Parse the Pyteomics cluster dict.

    Parameters
    ----------
    spectrum_dict : Dict
        The Pyteomics cluster dict to be parsed.

    Returns
    -------
    MsmsSpectrum
        The parsed cluster.
    """
    identifier = spectrum_dict['params']['title']

    mz_array = spectrum_dict['m/z array']
    intensity_array = spectrum_dict['intensity array']
    retention_time = float(spectrum_dict['params']['rtinseconds'])

    precursor_mz = float(spectrum_dict['params']['pepmass'][0])
    if 'charge' in spectrum_dict['params']:
        precursor_charge = int(spectrum_dict['params']['charge'][0])
    else:
        raise ValueError('Unknown precursor charge')

    return sus.MsmsSpectrum(identifier, precursor_mz, precursor_charge,
                            mz_array, intensity_array, None, retention_time)
def _parse_massbank(usi: str) -> Tuple[sus.MsmsSpectrum, str]:
    match = _match_usi(usi)
    index_flag = match.group(3)
    if index_flag.lower() != "accession":
        raise UsiError("Currently supported MassBank index flags: accession",
                       400)
    index = match.group(4)
    try:
        lookup_request = requests.get(f"{MASSBANK_SERVER}{index}",
                                      timeout=timeout)
        lookup_request.raise_for_status()
        spectrum_dict = lookup_request.json()
        mz, intensity = [], []
        for peak in spectrum_dict["spectrum"].split():
            peak_mz, peak_intensity = peak.split(":")
            mz.append(float(peak_mz))
            intensity.append(float(peak_intensity))
        precursor_mz = 0
        for metadata in spectrum_dict["metaData"]:
            if metadata["name"] == "precursor m/z":
                precursor_mz = float(metadata["value"])
                break
        source_link = (f"https://massbank.eu/MassBank/"
                       f"RecordDisplay.jsp?id={index}")

        spectrum = sus.MsmsSpectrum(usi, precursor_mz, 0, mz, intensity)
        return spectrum, source_link
    except requests.exceptions.HTTPError:
        raise UsiError("Unknown MassBank USI", 404)
Example #11
0
def _parse_spectrum(spectrum_dict: Dict) -> sus.MsmsSpectrum:
    """
    Parse the Pyteomics cluster dict.

    Parameters
    ----------
    spectrum_dict : Dict
        The Pyteomics cluster dict to be parsed.

    Returns
    -------
    MsmsSpectrum
        The parsed cluster.
    """
    spectrum_id = spectrum_dict['id']
    mz_array = spectrum_dict['m/z array']
    intensity_array = spectrum_dict['intensity array']
    retention_time = spectrum_dict['retentionTime']

    precursor_mz = spectrum_dict['precursorMz'][0]['precursorMz']
    if 'precursorCharge' in spectrum_dict['precursorMz'][0]:
        precursor_charge = spectrum_dict['precursorMz'][0]['precursorCharge']
    else:
        raise ValueError('Unknown precursor charge')

    return sus.MsmsSpectrum(spectrum_id, precursor_mz, precursor_charge,
                            mz_array, intensity_array, None, retention_time)
Example #12
0
def test_init_mz_sorted():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity)
    for mz1, mz2 in zip(spec.mz[:-1], spec.mz[1:]):
        assert mz1 <= mz2
Example #13
0
def test_scale_intensity_rank_more_peaks():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity)
    with pytest.raises(ValueError):
        spec.scale_intensity(scaling='rank', max_rank=num_peaks - 50)
Example #14
0
def test_annotate_peptide_fragments():
    fragment_tol_mass = 0.02
    fragment_tol_mode = 'Da'
    peptides = [
        'SYELPDGQVITIGNER', 'MFLSFPTTK', 'DLYANTVLSGGTTMYPGIADR', 'YLYEIAR',
        'VAPEEHPVLLTEAPLNPK'
    ]
    for peptide in peptides:
        fragment_mz = np.asarray([
            fragment.calc_mz for fragment in
            spectrum._get_theoretical_peptide_fragments(peptide)
        ])
        fragment_mz += np.random.uniform(-0.9 * fragment_tol_mass,
                                         0.9 * fragment_tol_mass,
                                         len(fragment_mz))
        num_peaks = 150
        mz = np.random.uniform(100, 1400, num_peaks)
        mz[:len(fragment_mz)] = fragment_mz
        intensity = np.random.lognormal(0, 1, num_peaks)
        charge = 2
        spec = spectrum.MsmsSpectrum('test_spectrum',
                                     mass.calculate_mass(sequence=peptide,
                                                         charge=charge),
                                     charge,
                                     mz,
                                     intensity,
                                     peptide=peptide)
        spec.annotate_peptide_fragments(fragment_tol_mass, fragment_tol_mode)
        assert np.count_nonzero(spec.annotation) == len(fragment_mz)
def _parse_gnps_task(usi: str) -> Tuple[sus.MsmsSpectrum, str]:
    match = _match_usi(usi)
    gnps_task_match = gnps_task_pattern.match(match.group(2))
    if gnps_task_match is None:
        raise UsiError("Incorrectly formatted GNPS task", 400)
    task = gnps_task_match.group(1)
    filename = gnps_task_match.group(2)
    index_flag = match.group(3)
    if index_flag.lower() != "scan":
        raise UsiError("Currently supported GNPS TASK index flags: scan", 400)
    scan = match.group(4)

    try:
        request_url = (f"https://gnps.ucsd.edu/ProteoSAFe/DownloadResultFile?"
                       f"task={task}&invoke=annotatedSpectrumImageText&block=0"
                       f"&file=FILE->{filename}&scan={scan}&peptide=*..*&"
                       f"force=false&_=1561457932129&format=JSON")
        lookup_request = requests.get(request_url, timeout=timeout)
        lookup_request.raise_for_status()
        spectrum_dict = lookup_request.json()
        mz, intensity = zip(*spectrum_dict["peaks"])
        source_link = (f"https://gnps.ucsd.edu/ProteoSAFe/status.jsp?"
                       f"task={task}")
        if "precursor" in spectrum_dict:
            precursor_mz = float(spectrum_dict["precursor"].get("mz", 0))
            charge = int(spectrum_dict["precursor"].get("charge", 0))
        else:
            precursor_mz, charge = 0, 0

        spectrum = sus.MsmsSpectrum(usi, precursor_mz, charge, mz, intensity)
        return spectrum, source_link
    except (requests.exceptions.HTTPError, json.decoder.JSONDecodeError):
        raise UsiError("Unknown GNPS task USI", 404)
Example #16
0
def _read_spectra_mgf(filename: str) -> Iterable[sus.MsmsSpectrum]:
    """
    Read MS/MS spectra from an MGF file.

    Parameters
    ----------
    filename : str
        The MGF file name.

    Returns
    -------
    Iterable[sus.MsmsSpectrum]
        An iterable of spectra in the given MGF file.
    """
    for spectrum_dict in tqdm.tqdm(pyteomics.mgf.read(filename),
                                   desc='Spectra read', unit='spectra'):
        spectrum = sus.MsmsSpectrum(
            spectrum_dict['params']['title'],
            spectrum_dict['params']['pepmass'][0],
            spectrum_dict['params']['charge'][0],
            spectrum_dict['m/z array'],
            spectrum_dict['intensity array'],
            None,
            spectrum_dict['params'].get('rtinseconds'))
        spectrum.filename = spectrum_dict['params'].get(
            'filename', os.path.splitext(os.path.basename(filename))[0])
        if 'scan' in spectrum_dict['params']:
            spectrum.scan = spectrum_dict['params']['scan']
        if 'cluster' in spectrum_dict['params']:
            spectrum.cluster = spectrum_dict['params']['cluster']
        yield spectrum
Example #17
0
    def plot_prediction(
        self,
        peptide,
        modifications,
        charge,
        prediction=None,
        ax=None,
        filename=None,
    ):
        """
        Plot MS²PIP-predicted spectrum with spectrum_utils.

        Parameters
        ----------
        peptide: string
            Unmodified peptide sequence. Only canonical amino acids are allowed, and
            peptide sequence should be of length [3, 100].
        modifications: string
            MS²PIP style-formatted modification string (e.g. `0|Acetyl|5|Oxidation`).
            See MS²PIP README.md for more info.
        charge: int
            Peptide precursor charge.
        prediction: tuple or None (default: None)
            Tuple with `ms2pip.single_prediction.SinglePrediction.predict()` output.
        ax: matplotlib.axes.Axes or None (default: None)
            Figure ax to plot onto.
        filename: str or None (default: None)
            Filename to save plot to. File extension defines the format. Figure will
            not be saved if None.

        """
        if not prediction:
            prediction = self.predict(peptide, modifications, charge)
        mz, intensity, annotation = prediction

        identifier = f"{peptide}/{charge}/{modifications}"
        precursor_mz = self.mod_info.calc_precursor_mz(peptide, modifications,
                                                       charge)
        mod_dict = self._modifications_to_dict(modifications)
        sus_annotation = self._get_sus_annotation(mz, annotation)

        spectrum = sus.MsmsSpectrum(
            identifier,
            precursor_mz,
            charge,
            mz,
            intensity,
            annotation=sus_annotation,
            retention_time=None,
            peptide=peptide,
            modifications=mod_dict,
        )

        if not ax:
            ax = plt.gca()
        sup.spectrum(spectrum, ax=ax)
        ax.set_title("MS²PIP prediction for " + identifier)
        if filename:
            plt.savefig(filename)
Example #18
0
def test_scale_intensity_rank():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity)
    spec.scale_intensity(scaling='rank')
    np.testing.assert_allclose(np.sort(spec.intensity),
                               np.arange(1, num_peaks + 1))
def test_mz_annotation_len():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    annotation = [str(this_mz) for this_mz in mz[:100]]
    with pytest.raises(ValueError):
        spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity,
                              annotation)
def test_round_no_merge():
    num_peaks = 150
    mz = np.arange(1, num_peaks + 1) + np.random.uniform(-0.49, 0.5, num_peaks)
    intensity = np.random.exponential(1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity)
    spec.round(0)
    for i, this_mz in enumerate(spec.mz, 1):
        assert i == pytest.approx(this_mz)
def _parse_motifdb(usi: str) -> Tuple[sus.MsmsSpectrum, str]:
    # E.g. mzspec:MOTIFDB:motif:motif_id.
    tokens = usi.split(':')
    motif_id = tokens[3]
    request_url = f'{MOTIFDB_SERVER}get_motif/{motif_id}'
    mz, intensity = zip(*json.loads(requests.get(request_url).text))
    source_link = f'http://ms2lda.org/motifdb/motif/{motif_id}/'
    return sus.MsmsSpectrum(usi, 0, 1, mz, intensity), source_link
Example #22
0
def _dict_to_spectrum(spectrum_dict: Dict):
    return sus.MsmsSpectrum(
        spectrum_dict['params']['title'],
        spectrum_dict['params']['pepmass'][0],
        spectrum_dict['params']['charge'][0],
        spectrum_dict['m/z array'],
        spectrum_dict['intensity array'],
        retention_time=spectrum_dict['params']['rtinseconds'])
Example #23
0
def test_init_modification():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    modifications = {0: +1, 4: -56, 'N-term': +16, 'C-term': -42}
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity,
                                 peptide='PEPTIDER',
                                 modifications=modifications)
    assert len(spec.modifications) == 4
def test_init_annotation_order():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    annotation = [str(this_mz) for this_mz in mz]
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity,
                                 annotation)
    for this_mz, this_annotation in zip(spec.mz, spec.annotation):
        assert this_mz == pytest.approx(float(this_annotation))
def test_filter_intensity_keep_all():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity)
    spec.filter_intensity()
    assert len(spec.mz) == num_peaks
    assert len(spec.intensity) == num_peaks
    assert len(spec.annotation) == num_peaks
Example #26
0
def test_annotate_molecule_fragments_invalid_mz():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 1, mz, intensity)
    fragment_tol_mass = 0.02
    fragment_tol_mode = 'Da'
    with pytest.raises(ValueError):
        spec.annotate_molecule_fragment('CCCCCCCC', 1600, 1, fragment_tol_mass,
                                        fragment_tol_mode)
Example #27
0
def test_round_merge_max():
    num_peaks = 10
    mz = np.arange(1, num_peaks + 1) + np.random.uniform(-0.2, 0.2, num_peaks)
    mz[4] = mz[3] + 0.0002
    mz[5] = mz[3] + 0.0005
    mz[7] = mz[8] - 0.00037
    intensity = np.arange(1, 11)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity.copy())
    spec.round(1, 'max')
    np.testing.assert_allclose(spec.intensity, [1, 2, 3, 6, 7, 9, 10])
Example #28
0
def test_round_merge_sum():
    num_peaks = 10
    mz = np.arange(1, num_peaks + 1) + np.random.uniform(-0.2, 0.2, num_peaks)
    mz[4] = mz[3] + 0.0002
    mz[5] = mz[3] + 0.0005
    mz[7] = mz[8] - 0.00037
    intensity = np.random.exponential(1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity.copy())
    spec.round(1, 'sum')
    assert np.sum(spec.intensity) == pytest.approx(np.sum(intensity))
Example #29
0
def test_init_intensity_order():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    mz_intensity_tuples = sorted(zip(mz, intensity),
                                 key=operator.itemgetter(0))
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity)
    for this_mz, this_intensity, mz_intensity_tuple in zip(
            spec.mz, spec.intensity, mz_intensity_tuples):
        assert (this_mz, this_intensity) == pytest.approx(mz_intensity_tuple)
def test_scale_intensity_max():
    num_peaks = 150
    mz = np.random.uniform(100, 1400, num_peaks)
    intensity = np.random.lognormal(0, 1, num_peaks)
    spec = spectrum.MsmsSpectrum('test_spectrum', 500, 2, mz, intensity)
    intensity_copy, max_intensity = spec.intensity.copy(), spec.intensity.max()
    spec.scale_intensity(max_intensity=1.)
    assert spec.intensity.max() == pytest.approx(1.)
    np.testing.assert_allclose(spec.intensity * max_intensity, intensity_copy,
                               rtol=1e-5)