Example #1
0
def sml():
    from speedml import Speedml
    sml = Speedml(
        train = 'tests/data/train.csv',
        test = 'tests/data/test.csv',
        target = 'Survived',
        uid = 'PassengerId')
    yield sml
    # teardown
    sml = None
Example #2
0
def sml():
    from speedml import Speedml
    sml = Speedml(
        train='/Users/manavsehgal/Developer/speedml/tests/data/train.csv',
        test='/Users/manavsehgal/Developer/speedml/tests/data/test.csv',
        target='Survived',
        uid='PassengerId')
    yield sml
    # teardown
    sml = None
Example #3
0
# https://github.com/Speedml/notebooks/blob/master/titanic/titanic-solution-using-speedml.ipynb

from speedml import Speedml
import pandas as pd

df = pd.read_csv(
    "https://gist.githubusercontent.com/rgbkrk/a7984a8788a73e2afb8fd4b89c8ec6de/raw/db8d1db9f878ed448c3cac3eb3c9c0dc5e80891e/2015.csv"
)

sml = Speedml(
    'https://gist.githubusercontent.com/rgbkrk/a7984a8788a73e2afb8fd4b89c8ec6de/raw/db8d1db9f878ed448c3cac3eb3c9c0dc5e80891e/2015.csv',
    'https://gist.githubusercontent.com/rgbkrk/a7984a8788a73e2afb8fd4b89c8ec6de/raw/db8d1db9f878ed448c3cac3eb3c9c0dc5e80891e/2015.csv',
    target='Happiness Rank',
    uid='Country')
sml.shape()
sml.info()
sml.plot.importance()
data_exploratory = sml.eda()

sml.train.head()

sml.plot.correlate()

sml.plot.distribute()

sml.plot.continuous('Health (Life Expectancy)')

sml.feature.density('Health (Life Expectancy)')
sml.train[['Health (Life Expectancy)',
           'Health (Life Expectancy)_density']].head()
Example #4
0
import seaborn as sns
import warnings


def ignore_warn(*args, **kwargs):
    pass


warnings.warn = ignore_warn  # ignore annoying warning (from sklearn and seaborn)
from scipy import stats
from scipy.stats import norm, skew  # for some statistics
from speedml import Speedml

pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x))  # Limiting floats

sml = Speedml("D:/train.csv", "D:/test.csv", target='Survived', uid='PassengerId')
train = sml.train
test = sml.test
ntrain = train.shape[0]
ntest = test.shape[0]
data = train.append(test)

sml.eda()
sml.feature.outliers('Fare', upper=99)
sml.feature.outliers('Parch', upper=99)
sml.feature.density(['Age', 'Ticket'])
sml.train[['Age', 'Age_density']].head()
sml.feature.fillna(a='Cabin', new='Z')
sml.feature.extract(new='Deck', a='Cabin', regex='([A-Z]){1}')
sml.feature.mapping('Sex', {'male': 0, 'female': 1})
sml.feature.sum(new='FamilySize', a='Parch', b='SibSp')
Example #5
0
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


from speedml import Speedml

get_ipython().magic(u'matplotlib inline')

sml = Speedml('../input/train.csv','../input/test.csv',target='Survived',uid='PassengerId')
print("Speedml set up!")

sml.train.head()

sml.plot.correlate()

sml.plot.distribute()

sml.plot.continuous('Age')

sml.plot.continuous('Fare')

sml.feature.outliers('Fare', upper=99)

sml.plot.continuous('Fare')

sml.plot.ordinal('Parch')
print(sml.feature.outliers('Parch', upper=99))
sml.plot.ordinal('Parch')
Example #6
0
def ignore_warn(*args, **kwargs):
    pass


warnings.warn = ignore_warn  #ignore annoying warning (from sklearn and seaborn)
from scipy import stats
from scipy.stats import norm, skew  #for some statistics
from speedml import Speedml
import pandas as pd
from sklearn.ensemble import RandomForestRegressor

pd.set_option('display.float_format',
              lambda x: '{:.3f}'.format(x))  #Limiting floats
sml = Speedml(
    "C:\\Users\\suiyun.yang\\Desktop\\Kaggle\\datasets\\Kaggle\\Titanic\\train.csv",
    "C:\\Users\\suiyun.yang\\Desktop\\Kaggle\\datasets\\Kaggle\\Titanic\\test.csv",
    target='Survived',
    uid='PassengerId')
train = sml.train
test = sml.test

ntrain = train.shape[0]
ntest = test.shape[0]
data = train.append(test)

sml.feature.outliers('Fare', upper=99)
sml.feature.outliers('Parch', upper=99)


### 使用 RandomForestClassifier 填补缺失的年龄属性
def set_missing_ages(df):
Example #7
0
import warnings
from speedml import Speedml
import matplotlib.pyplot as plt
warnings.simplefilter("ignore", category=DeprecationWarning)
#warnings.warn("deprecated", DeprecationWarning)

sml = Speedml('train.csv', 'test.csv', target='Survived', uid='PassengerId')

sml.plot.continuous('Age')
plt.show()
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from speedml import Speedml

sml = Speedml('titanic_train.csv','titanic_test.csv',target='Survived',uid='PassengerId')
sml.shape()


sml.configure('overfit_threshold',sml.np.sqrt(sml.train.shape[0])/sml.train.shape[0])

sml.eda()

sml.train.head()

sml.plot.correlate()

sml.plot.distribute()

sml.plot.continuous('Age')

sml.plot.continuous('Fare')

sml.feature.outliers('Fare',upper=98)

sml.plot.continuous('Fare')

sml.plot.strip('Pclass','Fare')


sml.plot.ordinal('SibSp')
# ## Getting Started
#
# To get started all you need to do is include one package in your project. Speedml includes pandas, sklearn, numpy, xgboost, by default so you do not need to import these.

# In[ ]:

from speedml import Speedml

get_ipython().magic(u'matplotlib inline')

# It takes one line of code to initialize train, test datasets, define the target and unique id variables. This also initializes wrapper components for EDA (sml.plot), XGBoost (sml.xgb), modeling (sml.model), feature engineering (sml.feature) and more...

# In[ ]:

sml = Speedml('../input/train.csv',
              '../input/test.csv',
              target='Survived',
              uid='PassengerId')

# You can access pandas directly as a Speedml component.

# In[ ]:

sml.train.head()

# ## Feature Correlations
#
# You can quickly check feature correlations using a plot. Learn how to interpret this plot at https://speedml.com/plot-correlation-of-features/

# In[ ]:

sml.plot.correlate()
Example #10
0
class TitanicML:
    def __init__(self):
        self.sml = None

    def run(self):
        print("running")
        self.data()
        self.models()
        self.results()

    def data(self):
        self.setup_speedml()
        self.prepare_data()

    def models(self):
        self.prepare_models()
        self.evaluate_models()
        self.predict_models()

    def results(self):
        self.save_results()
        self.write_results()

    def prepare_data(self):
        print("preparing data")
        self.strip_outliers()
        self.create_features()
        self.map_features()
        self.impute_features()
        self.feature_densities()
        self.drop_features()
        print("data prepared")

    def setup_speedml(self):
        print("Setting up Speedml")
        self.sml = Speedml('../input/train.csv', '../input/test.csv', target='Survived', uid='PassengerId')

    ################ DATA PREPARATION  ################

    def strip_outliers(self):
        print("Stripping Outliers")
        self.sml.feature.outliers('Fare', upper=99)
        self.sml.feature.outliers('SibSp', upper=98)

    def create_features(self):
        self.create_family_size()
        self.create_title()
        self.create_deck()

    def map_features(self):
        self.map_sex()
        self.map_embarked()

    def impute_features(self):
        self.impute_ages()
        self.impute_values()

    def feature_densities(self):
        #self.create_ticket_density()
        self.create_age_density()
        #self.create_fare_density()

    def drop_features(self):
        self.drop_cabin()
        self.drop_ticket()
        #self.drop_fare()
        #self.drop_age()
        #self.drop_embarked()
        self.drop_sibsp()
        self.drop_parch()
        self.drop_name()

    ### CREATE FEATUES

    def create_family_size(self):
        print("Merge Parch and SibSp into FamilySize")
        self.sml.feature.sum(new='FamilySize', a='Parch', b='SibSp')
        self.sml.feature.add('FamilySize', 1)

    def create_title(self):
        print("extract Title from Name")
        self.sml.feature.extract(new='Title', a='Name', regex=r" ([A-Za-z]+)\.")
        self.sml.feature.replace(a='Title', match=['Lady', 'Countess', 'Dona', 'Mme'], new='Mrs')
        self.sml.feature.replace(a='Title', match=['Don', 'Sir', 'Jonkheer'], new='Mr')
        self.sml.feature.replace(a='Title', match=['Capt', 'Col', 'Dr', 'Major', 'Rev'], new='Crew')
        self.sml.feature.replace(a='Title', match=['Mlle','Ms'], new='Miss')
        self.sml.feature.mapping('Title', {'Miss': 1, 'Master': 2, 'Mrs': 3, 'Mr': 4, 'Crew': 5})
        self.sml.feature.fillna(a='Title', new=0)

    def create_deck(self):
        print("create deck")
        self.sml.feature.fillna(a='Cabin', new='Z')
        self.sml.feature.extract(new='Deck', a='Cabin', regex='([A-Z]){1}')
        self.sml.feature.labels(['Deck', 'Cabin'])
        ## TODO ^^ figure out Deck from TicketPrice, Cabin, and PClass

    ### MAP FEATURES

    def map_sex(self):
        print("map sex")
        self.sml.feature.mapping('Sex', {'male': 0, 'female': 1})

    def map_embarked(self):
        print("map embarked")
        self.sml.feature.fillna(a='Embarked', new='Z')
        self.sml.feature.mapping('Embarked', {'S': 0, 'C': 1, 'Q': 2, 'Z': 3})

    ### IMPUTE FEATURES

    def impute_ages(self):
        print("Impute ages")
        titanic.sml.feature.fillna('Age',0)
        for df in [titanic.sml.train, titanic.sml.test]:
          for i in list(range(1,6)):
              titles = df[(df['Title'] == i) & (df['Age'] != 0)]
              title_mean_age = titles['Age'].median()
              null_ages = df[(df['Title'] == i) & (df['Age'] == 0)]
              null_ages['Age'] = title_mean_age

    def impute_values(self):
        print("Impute remaining empty fields")
        self.sml.feature.impute()

    ### FEATURE DENSITIES

    def create_ticket_density(self):
        print("create ticket density")
        self.sml.feature.density('Ticket')
        ## TODO: ^^ let's figure out Deck using this and PClass

    def create_age_density(self):
        print("FOR NOW add Age densities")
        self.sml.feature.density(['Age'])

    def create_fare_density(self):
        print("FOR NOW add Fare densities")
        self.sml.feature.density(['Fare'])

    def drop_ticket(self):
        print("drop ticket")
        self.sml.feature.drop('Ticket')

    ### DROP FEATURES

    def drop_cabin(self):
        print("drop cabin")
        self.sml.feature.drop('Cabin')

    def drop_fare(self):
        print("drop fare")
        self.sml.feature.drop('Fare')

    def drop_age(self):
        print("drop age")
        self.sml.feature.drop('Age')

    def drop_embarked(self):
        print("drop embarked")
        self.sml.feature.drop('Embarked')

    def drop_parch(self):
        print("drop parch")
        self.sml.feature.drop('Parch')

    def drop_sibsp(self):
        print("drop sibsp")
        self.sml.feature.drop("SibSp")

    def drop_name(self):
        print("drop name")
        self.sml.feature.drop("Name")

     ################ MODEL PREPARATION  ################

    def prepare_models(self):
        print("prepare models")
        self.sml.model.data()
        self.set_model_parameters()

    def set_model_parameters(self):
        print("set model parameters")
        ret1 = self.refine_max_depth_and_min_child_weight()
        ret2 = self.refine_learning_rate_and_subsample(ret1)
        self.assign_tuned_variables(ret1, ret2)

    def refine_max_depth_and_min_child_weight(self):
        """Finds best max_depth and min_child_weight against fixed params"""
        print("refine max depth and min child weight")
        select_params = {'max_depth': list(range(3, 9)), 'min_child_weight': list(range(1, 7))}
        fixed_params = {'learning_rate': 0.1, 'subsample': 0.8,
                        'colsample_bytree': 0.8, 'seed': 0,
                        'objective': 'binary:logistic'}
        ret = self.sml.xgb.hyper(select_params, fixed_params)
        return ret['params'][0]


    def refine_learning_rate_and_subsample(self, results):
        """Finds best refine_learning_rate and subsample against fixed params"""
        print("refine learning rate and subsamples with max_depth")
        learning_rate_range = [0.3,0.2,0.1,0.05,0.01]
        subsample_range = list(map(lambda x: str(x/10), range(6, 9)))
        select_params = {'learning_rate': learning_rate_range, 'subsample': subsample_range}
        fixed_params = {'max_depth': results['max_depth'], 'min_child_weight': results['min_child_weight'],
                        'colsample_bytree': 0.8, 'seed': 0,
                        'objective': 'binary:logistic'}
        ret = self.sml.xgb.hyper(select_params, fixed_params)
        return ret['params'][0]

    def assign_tuned_variables(self, ret1, ret2):
        """Assigned best fit params to XGBoost"""
        print("assign tuned variables")
        print("learning_rate: "+str(ret2['learning_rate']))
        print("subsample: "+str(ret2['subsample']))
        print("max_depth: "+str(ret1['max_depth']))
        print("min_child_weight: "+str(ret1['min_child_weight']))
        tuned_params = {'learning_rate': ret2['learning_rate'], 'subsample': ret2['subsample'],
                        'max_depth': ret1['max_depth'], 'min_child_weight': ret1['min_child_weight'],
                        'seed':0, 'colsample_bytree': 0.8,
                        'objective': 'binary:logistic'}
        self.sml.xgb.cv(tuned_params)
        tuned_params['n_estimators'] = self.sml.xgb.cv_results.shape[0] - 1
        self.sml.xgb.params(tuned_params)

    def evaluate_models(self):
        print("Show best models")
        self.sml.xgb.classifier()
        self.sml.model.evaluate()
        self.sml.plot.model_ranks()
        self.sml.model.ranks()

    def predict_models(self):
        print("predict and get accuracy")
        self.sml.xgb.fit()
        self.sml.xgb.predict()
        self.sml.xgb.feature_selection()
        self.sml.xgb.sample_accuracy()

     ################ RESULTS  ################

    def save_results(self):
        print("save results when happy")
        self.sml.save_results(
            columns={'PassengerId': self.sml.uid,
                     'Survived': self.sml.xgb.predictions},
            file_path='output/titanic-speedml-{}.csv'.format(self.sml.slug()))
        self.sml.slug()

    def write_results(self):
        print(check_output(["ls", "../input"]).decode("utf8"))
Example #11
0
 def setup_speedml(self):
     print("Setting up Speedml")
     self.sml = Speedml('../input/train.csv', '../input/test.csv', target='Survived', uid='PassengerId')