Example #1
0


G = 6.63784e-11

cm_to_m = 1. / 100.

msun_to_g = 1.988e33

pc_to_m = 3.08567758128e16

gcm_to_msunpc = 5.03e-34 * (3.086e18)**2



def print_log(time, gravity, particles, total_energy_at_t0):

    kinetic_energy = gravity.kinetic_energy

    potential_energy = gravity.potential_energy

    total_energy_at_this_time = kinetic_energy + potential_energy

    print "time                    : " , time

    print "energy error            : " , (total_energy_at_this_time - total_energy_at_t0) / total_energy_at_t0





def simulate_small_cluster(

        number_of_stars = 1000.,

        end_time = 40 | nbody_system.time,

        number_of_workers = 1

    ):

    #convert_nbody = nbody_system.nbody_to_si(number_of_stars | units.MSun, 1. | units.parsec)
Example #2
0
    f.close()



    return



def gasvel_potential(sigma_cl, mstars, eps, k_rho, k_P=1., f_g=1., phi_Pc=4./3., phi_Pbar=1.32, R=None):        

    #R = 0.05 * np.power(A / (k_P**2 * eps**2 * phi_Pc * phi_Pbar), 1./4.) * np.power(np.sum(mstars) / 30., 1./2.) * sigma_cl**(-1./2.) * pc_to_m

    if R is None:

        R = clump_radius(mstars, sigma_cl, eps, k_rho, k_P, f_g, phi_Pc, phi_Pbar) * pc_to_m

    

    #return G / (2. * (5. - 2. * k_rho)) / R * (np.sum(mstars) * msun_to_g / 1000.)**2

    return - 3. / 5. * (1. - k_rho / 3.) / (1. - 2. * k_rho / 5.) * G * (np.sum(mstars) * msun_to_g / 1000.)**2. / R

    



def gasvel_ke(mstars, sigma_cl, eps, phi_b, k_rho, k_P=1., f_g=1., phi_Pc=4./3., phi_Pbar=1.32, R=None):

    """

    Calculates the kinetic energy expected for a cluster with stars moving using a mass-averaged velocity dispersion.



    mstars: array_like

        Masses of the stars in solar masses

    sigma: float

        Mass-averaged velocity dispersion in km/s

    """

    sigma = gasveldisp(mstars, sigma_cl, eps, phi_b, k_rho, k_P, f_g, phi_Pc, phi_Pbar)# * 7./6.



    print(sigma)

    

    #R = 0.05 * np.power(A / (k_P**2 * eps**2 * phi_Pc * phi_Pbar), 1./4.) * np.power(np.sum(mstars) / 30., 1./2.) * sigma_cl**(-1./2.)

    if R is None:

        R = clump_radius(mstars, sigma_cl, eps, k_rho, k_P, f_g, phi_Pc, phi_Pbar)

    

    rho_s = (3. - k_rho) / (4. * np.pi) / R**3.



    #print(sigma)

    #print(rho_s)

    #print(R_s)

    

    return 3./2. * (np.sum(mstars) * msun_to_g / 1000.) * (sigma * 1000.)**2.

    #return 2. * np.pi * (rho_s * np.sum(mstars) * msun_to_g / 1000) * (np.sqrt(3.) * sigma * 1000)**2. * R**3. / (5. - 2. * k_rho)



def radii(pos):

    return np.sqrt((pos[ : , 0].value_in(units.parsec))**2 + (pos[ : , 1].value_in(units.parsec))**2 +(pos[ : , 2].value_in(units.parsec))**2)



def convert_to_nbody(mass, cluster):

    """

    Converts a cluster to nbody units using the prescription of Heggie & Mathieu 1986

    """

    Gun = G | units.m**3 * units.kg**-1. * units.s**-2.

    

    mtot = np.sum(mass)



    ke = cluster.kinetic_energy()



    pe = cluster.potential_energy()



    etot = ke + pe



    if etot > 0 | units.m**2 * units.kg * units.s**-2:

        etot *= -1.
Example #3
0
        subplot.scatter(

            positions[...,0].value_in(nbody_system.length),

            positions[...,1].value_in(nbody_system.length),

            s = 1,

            edgecolors = 'red',

            facecolors = 'red'

        )



        subplot.set_xlim(-4.0,4.0)

        subplot.set_ylim(-4.0,4.0)

        subplot.set_aspect(1.)



        title = 'time = {0:.2f}'.format(time.value_in(nbody_system.time))



        subplot.set_title(title)#, fontsize=12)

        spines = []

        if index % plot_matrix_size == 0:

            spines.append('left')



        if index >= ((number_of_rows - 1)*plot_matrix_size):

            spines.append('bottom')





        adjust_spines(subplot, spines,np.arange(-4.0,4.1, 1.0))



        if index % plot_matrix_size == 0:

            subplot.set_ylabel('y')



        if index >= ((number_of_rows - 1)*plot_matrix_size):

            subplot.set_xlabel('x')

            

    plt.savefig('simple_cluster_powerlaw.png', clobber=True)





def write_init_file(m, pos, vel, fname):

    """

    Writes the initial masses, positions, and velocities of a cluster to a file.

    """

    f = open(fname, 'w')



    for i in np.arange(np.size(m)):

        f.write(str(m[i]) + '\t' + str(pos[i,0]) + '\t' + str(pos[i,1]) + '\t' + str(pos[i,2]) + '\t' + str(vel[i,0]) + '\t' + '\t' + str(vel[i,1]) + '\t' + str(vel[i,2]) + '\n')