Example #1
0
##############################################################################
# plot_unit_waveforms()
# ~~~~~~~~~~~~~~~~~~~~~

unit_ids = sorting.unit_ids[:4]

sw.plot_unit_waveforms(we, unit_ids=unit_ids)

##############################################################################
# plot_unit_templates()
# ~~~~~~~~~~~~~~~~~~~~~

unit_ids = sorting.unit_ids

sw.plot_unit_templates(we, unit_ids=unit_ids, ncols=5)

##############################################################################
# plot_unit_probe_map()
# ~~~~~~~~~~~~~~~~~~~~~

unit_ids = sorting.unit_ids[:4]
sw.plot_unit_probe_map(we, unit_ids=unit_ids)

##############################################################################
# plot_unit_waveform_density_map()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# This is your best friend to check over merge

unit_ids = sorting.unit_ids[:4]
   if not sorter:
       continue
 
   st.postprocessing.export_to_phy(recording_cache, 
                                   sorter, output_folder='phy_'+i,
                                   grouping_property='group', verbose=True, recompute_info=True)
   
   #Open phy interface
   os.system('phy template-gui phy_'+i+'/params.py') 
  
       
   #Remove detections curated as noise.
   sorting_phy_curated = se.PhySortingExtractor('phy_'+i+'/', exclude_cluster_groups=['noise']);
   
   #Print waveforms of units
   w_wf = sw.plot_unit_templates(sorting=sorting_phy_curated, recording=recording_cache)
   plt.savefig('manual_'+i+'_unit_templates.pdf', bbox_inches='tight');
   plt.savefig('manual_'+i+'_unit_templates.png', bbox_inches='tight');
   plt.close()
   
   #Compute agreement matrix wrt consensus-based sorting.
   sorting_phy_consensus = se.PhySortingExtractor('phy_AGR/', exclude_cluster_groups=['noise']);
   cmp=sc.compare_sorter_to_ground_truth(sorting_phy_curated,sorting_phy_consensus)
   sw.plot_agreement_matrix(cmp)
   plt.savefig('agreement_matrix_'+i+'.pdf', bbox_inches='tight');
   plt.savefig('agreement_matrix_'+i+'.png', bbox_inches='tight');
   plt.close()
   
   
   #Access unit ID and firing rate.
   os.chdir('phy_'+i)
Example #3
0
def ms4(recording_folder):

    os.chdir(recording_folder)

    #If sorter has already been run skip it.
    subfolders = [f.name for f in os.scandir(recording_folder) if f.is_dir()]
    if ('phy_MS4' in subfolders):
        print('Tetrode ' + recording_folder.split('_')[-1] +
              ' was previously sorted. Skipping')
        return

    print('Running Mountain Sort 4 on Tetrode ' +
          recording_folder.split('_')[-1])

    #Check if the recording has been preprocessed before and load it.
    # Else proceed with preprocessing.
    arr = os.listdir()

    #Load .continuous files
    recording = se.OpenEphysRecordingExtractor(recording_folder)
    channel_ids = recording.get_channel_ids()
    fs = recording.get_sampling_frequency()
    num_chan = recording.get_num_channels()

    print('Channel ids:', channel_ids)
    print('Sampling frequency:', fs)
    print('Number of channels:', num_chan)

    #!cat tetrode9.prb #Asks for prb file
    # os.system('cat /home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH/tetrode9.prb')
    #recording_prb = recording.load_probe_file('/home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH/tetrode.prb')
    recording_prb = recording.load_probe_file('tetrode.prb')

    print('Channels after loading the probe file:',
          recording_prb.get_channel_ids())
    print('Channel groups after loading the probe file:',
          recording_prb.get_channel_groups())

    #For testing only: Reduce recording.
    #recording_prb = se.SubRecordingExtractor(recording_prb, start_frame=100*fs, end_frame=420*fs)

    #Bandpass filter
    recording_cmr = st.preprocessing.bandpass_filter(recording_prb,
                                                     freq_min=300,
                                                     freq_max=6000)
    recording_cache = se.CacheRecordingExtractor(recording_cmr)

    print(recording_cache.get_channel_ids())
    print(recording_cache.get_channel_groups())
    print(recording_cache.get_num_frames() /
          recording_cache.get_sampling_frequency())

    #%% Run all channels. There are only a single tetrode channels anyway.

    #Create sub recording to avoid saving whole recording.Requirement from NWB to allow saving sorters data.
    recording_sub = se.SubRecordingExtractor(recording_cache,
                                             start_frame=200 * fs,
                                             end_frame=320 * fs)

    #Mountainsort4
    if 'sorting_mountainsort4_all.nwb' in arr:
        print('Loading mountainsort4')
        sorting_mountainsort4_all = se.NwbSortingExtractor(
            'sorting_mountainsort4_all.nwb')

    else:
        t = time.time()
        sorting_mountainsort4_all = ss.run_mountainsort4(
            recording_cache,
            output_folder='results_all_mountainsort4',
            delete_output_folder=True,
            filter=False)
        print('Found', len(sorting_mountainsort4_all.get_unit_ids()), 'units')
        time.time() - t
        #Save mountainsort4
        se.NwbRecordingExtractor.write_recording(
            recording_sub, 'sorting_mountainsort4_all.nwb')
        se.NwbSortingExtractor.write_sorting(sorting_mountainsort4_all,
                                             'sorting_mountainsort4_all.nwb')

    print(sorting_mountainsort4_all.get_unit_ids())

    st.postprocessing.export_to_phy(recording_cache,
                                    sorting_mountainsort4_all,
                                    output_folder='phy_MS4',
                                    grouping_property='group',
                                    verbose=True,
                                    recompute_info=True)

    w_wf = sw.plot_unit_templates(sorting=sorting_mountainsort4_all,
                                  recording=recording_cache)
    plt.savefig('unit_templates.pdf', bbox_inches='tight')
    plt.savefig('unit_templates.png', bbox_inches='tight')
    plt.close()

    #Access unit ID and firing rate.
    os.chdir('phy_MS4')
    spike_times = np.load('spike_times.npy')
    spike_clusters = np.load('spike_clusters.npy')

    #Create a list with the unit IDs
    some_list = np.unique(spike_clusters)
    some_list = some_list.tolist()

    #Bin data in bins of 25ms
    #45 minutes
    bins = np.arange(start=0, stop=45 * 60 * fs + 1, step=.025 * fs)
    NData = np.zeros([np.unique(spike_clusters).shape[0], bins.shape[0] - 1])

    cont = 0
    for x in some_list:
        ind = (spike_clusters == x)
        fi = spike_times[ind]
        inds = np.histogram(fi, bins=bins)
        inds1 = inds[0]
        NData[cont, :] = inds1
        cont = cont + 1

    #Save activation matrix
    os.chdir("..")
    a = os.path.split(os.getcwd())[1]
    np.save('actmat_auto_' + a.split('_')[1], NData)
    np.save('unit_id_auto_' + a.split('_')[1], some_list)
Example #4
0
def manual(recording_folder):
    #Folder with tetrode data
    #recording_folder='/home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH';

    os.chdir(recording_folder)
    """
    Adding Matlab-based sorters to path
    
    """

    #IronClust
    iron_path = "~/Documents/SpikeSorting/ironclust"
    ss.IronClustSorter.set_ironclust_path(os.path.expanduser(iron_path))
    ss.IronClustSorter.ironclust_path

    #If sorter has already been run skip it.
    subfolders = [f.name for f in os.scandir(recording_folder) if f.is_dir()]
    #if ('phy_KL' in subfolders) & ('phy_IC' in subfolders) & ('phy_Waveclus' in subfolders) & ('phy_SC' in subfolders) & ('phy_MS4' in subfolders) & ('phy_HS' in subfolders) & ('phy_TRI' in subfolders):
    if ('phy_KL' in subfolders) & ('phy_IC' in subfolders) & (
            'phy_SC' in subfolders) & ('phy_MS4' in subfolders) & (
                'phy_HS' in subfolders) & ('phy_TRI' in subfolders):
        print('Tetrode ' + recording_folder.split('_')[-1] +
              ' was previously manually sorted. Skipping')
        return

    #Check if the recording has been preprocessed before and load it.
    # Else proceed with preprocessing.
    arr = os.listdir()

    #Load .continuous files
    recording = se.OpenEphysRecordingExtractor(recording_folder)
    channel_ids = recording.get_channel_ids()
    fs = recording.get_sampling_frequency()
    num_chan = recording.get_num_channels()

    print('Channel ids:', channel_ids)
    print('Sampling frequency:', fs)
    print('Number of channels:', num_chan)

    #!cat tetrode9.prb #Asks for prb file
    # os.system('cat /home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH/tetrode9.prb')
    recording_prb = recording.load_probe_file(os.getcwd() + '/tetrode.prb')

    print('Channels after loading the probe file:',
          recording_prb.get_channel_ids())
    print('Channel groups after loading the probe file:',
          recording_prb.get_channel_groups())

    #For testing only: Reduce recording.
    #recording_prb = se.SubRecordingExtractor(recording_prb, start_frame=100*fs, end_frame=420*fs)

    #Bandpass filter
    recording_cmr = st.preprocessing.bandpass_filter(recording_prb,
                                                     freq_min=300,
                                                     freq_max=6000)
    recording_cache = se.CacheRecordingExtractor(recording_cmr)

    print(recording_cache.get_channel_ids())
    print(recording_cache.get_channel_groups())
    print(recording_cache.get_num_frames() /
          recording_cache.get_sampling_frequency())

    #View installed sorters
    #ss.installed_sorters()
    #mylist = [f for f in glob.glob("*.txt")]

    #%% Run all channels. There are only single tetrode channels anyway.

    #Create sub recording to avoid saving whole recording.Requirement from NWB to allow saving sorters data.
    recording_sub = se.SubRecordingExtractor(recording_cache,
                                             start_frame=200 * fs,
                                             end_frame=320 * fs)
    # Sorters2CompareLabel=['KL','IC','Waveclus','HS','MS4','SC','TRI'];
    Sorters2CompareLabel = ['KL', 'IC', 'HS', 'MS4', 'SC', 'TRI']
    subfolders = [f.name for f in os.scandir(recording_folder) if f.is_dir()]

    for num in range(len(Sorters2CompareLabel)):

        i = Sorters2CompareLabel[num]
        print(i)
        if 'phy_' + i in subfolders:
            print('Sorter already used for curation. Skipping')
            continue
        else:

            if 'KL' in i:
                #Klusta
                if 'sorting_KL_all.nwb' in arr:
                    print('Loading Klusta')
                    sorting_KL_all = se.NwbSortingExtractor(
                        'sorting_KL_all.nwb')

                else:
                    t = time.time()
                    sorting_KL_all = ss.run_klusta(
                        recording_cache,
                        output_folder='results_all_klusta',
                        delete_output_folder=True)
                    print('Found', len(sorting_KL_all.get_unit_ids()), 'units')
                    print(time.time() - t)
                    #Save Klusta
                    se.NwbRecordingExtractor.write_recording(
                        recording_sub, 'sorting_KL_all.nwb')
                    se.NwbSortingExtractor.write_sorting(
                        sorting_KL_all, 'sorting_KL_all.nwb')
                sorter = sorting_KL_all

            if 'IC' in i:
                #Ironclust
                if 'sorting_IC_all.nwb' in arr:
                    print('Loading Ironclust')
                    sorting_IC_all = se.NwbSortingExtractor(
                        'sorting_IC_all.nwb')

                else:
                    t = time.time()
                    sorting_IC_all = ss.run_ironclust(
                        recording_cache,
                        output_folder='results_all_ic',
                        delete_output_folder=True,
                        filter=False)
                    print('Found', len(sorting_IC_all.get_unit_ids()), 'units')
                    print(time.time() - t)
                    #Save IC
                    se.NwbRecordingExtractor.write_recording(
                        recording_sub, 'sorting_IC_all.nwb')
                    se.NwbSortingExtractor.write_sorting(
                        sorting_IC_all, 'sorting_IC_all.nwb')
                sorter = sorting_IC_all

            # if 'Waveclus' in i:
            #     #Waveclust
            #     if 'sorting_waveclus_all.nwb' in arr:
            #         print('Loading waveclus')
            #         sorting_waveclus_all=se.NwbSortingExtractor('sorting_waveclus_all.nwb');

            #     else:
            #         t = time.time()
            #         sorting_waveclus_all = ss.run_waveclus(recording_cache, output_folder='results_all_waveclus',delete_output_folder=True)
            #         print('Found', len(sorting_waveclus_all.get_unit_ids()), 'units')
            #         print(time.time() - t)
            #         #Save waveclus
            #         se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_waveclus_all.nwb')
            #         se.NwbSortingExtractor.write_sorting(sorting_waveclus_all, 'sorting_waveclus_all.nwb')
            #     sorter=sorting_waveclus_all;

            if 'HS' in i:
                #Herdingspikes
                if 'sorting_herdingspikes_all.nwb' in arr:
                    print('Loading herdingspikes')
                    sorting_herdingspikes_all = se.NwbSortingExtractor(
                        'sorting_herdingspikes_all.nwb')
                    sorter = sorting_herdingspikes_all

                else:
                    t = time.time()
                    try:
                        sorting_herdingspikes_all = ss.run_herdingspikes(
                            recording_cache,
                            output_folder='results_all_herdingspikes',
                            delete_output_folder=True)
                        print('Found',
                              len(sorting_herdingspikes_all.get_unit_ids()),
                              'units')
                        time.time() - t
                        #Save herdingspikes
                        se.NwbRecordingExtractor.write_recording(
                            recording_sub, 'sorting_herdingspikes_all.nwb')
                        try:
                            se.NwbSortingExtractor.write_sorting(
                                sorting_herdingspikes_all,
                                'sorting_herdingspikes_all.nwb')
                        except TypeError:
                            print(
                                "No units detected.  Can't save HerdingSpikes")
                            os.remove("sorting_herdingspikes_all.nwb")
                        sorter = sorting_herdingspikes_all
                    except:
                        print('Herdingspikes has failed')
                        sorter = []

            if 'MS4' in i:
                #Mountainsort4
                if 'sorting_mountainsort4_all.nwb' in arr:
                    print('Loading mountainsort4')
                    sorting_mountainsort4_all = se.NwbSortingExtractor(
                        'sorting_mountainsort4_all.nwb')

                else:
                    t = time.time()
                    sorting_mountainsort4_all = ss.run_mountainsort4(
                        recording_cache,
                        output_folder='results_all_mountainsort4',
                        delete_output_folder=True,
                        filter=False)
                    print('Found',
                          len(sorting_mountainsort4_all.get_unit_ids()),
                          'units')
                    print(time.time() - t)
                    #Save mountainsort4
                    se.NwbRecordingExtractor.write_recording(
                        recording_sub, 'sorting_mountainsort4_all.nwb')
                    se.NwbSortingExtractor.write_sorting(
                        sorting_mountainsort4_all,
                        'sorting_mountainsort4_all.nwb')
                sorter = sorting_mountainsort4_all

            if 'SC' in i:
                #Spykingcircus
                if 'sorting_spykingcircus_all.nwb' in arr:
                    print('Loading spykingcircus')
                    sorting_spykingcircus_all = se.NwbSortingExtractor(
                        'sorting_spykingcircus_all.nwb', filter=False)

                else:
                    t = time.time()
                    sorting_spykingcircus_all = ss.run_spykingcircus(
                        recording_cache,
                        output_folder='results_all_spykingcircus',
                        delete_output_folder=True)
                    print('Found',
                          len(sorting_spykingcircus_all.get_unit_ids()),
                          'units')
                    print(time.time() - t)
                    #Save sorting_spykingcircus
                    se.NwbRecordingExtractor.write_recording(
                        recording_sub, 'sorting_spykingcircus_all.nwb')
                    se.NwbSortingExtractor.write_sorting(
                        sorting_spykingcircus_all,
                        'sorting_spykingcircus_all.nwb')
                sorter = sorting_spykingcircus_all

            if 'TRI' in i:
                #Tridesclous
                if 'sorting_tridesclous_all.nwb' in arr:
                    print('Loading tridesclous')
                    try:
                        sorting_tridesclous_all = se.NwbSortingExtractor(
                            'sorting_tridesclous_all.nwb')
                    except AttributeError:
                        print(
                            "No units detected.  Can't load Tridesclous so will run it."
                        )
                        t = time.time()
                        sorting_tridesclous_all = ss.run_tridesclous(
                            recording_cache,
                            output_folder='results_all_tridesclous',
                            delete_output_folder=True)
                        print('Found',
                              len(sorting_tridesclous_all.get_unit_ids()),
                              'units')
                        time.time() - t
                        os.remove("sorting_tridesclous_all.nwb")
                        #Save sorting_tridesclous
                        se.NwbRecordingExtractor.write_recording(
                            recording_sub, 'sorting_tridesclous_all.nwb')
                        se.NwbSortingExtractor.write_sorting(
                            sorting_tridesclous_all,
                            'sorting_tridesclous_all.nwb')

                else:
                    t = time.time()
                    sorting_tridesclous_all = ss.run_tridesclous(
                        recording_cache,
                        output_folder='results_all_tridesclous',
                        delete_output_folder=True)
                    print('Found', len(sorting_tridesclous_all.get_unit_ids()),
                          'units')
                    time.time() - t
                    #Save sorting_tridesclous
                    se.NwbRecordingExtractor.write_recording(
                        recording_sub, 'sorting_tridesclous_all.nwb')
                    se.NwbSortingExtractor.write_sorting(
                        sorting_tridesclous_all, 'sorting_tridesclous_all.nwb')
                sorter = sorting_tridesclous_all

        #Check if sorter failed
            if not sorter:
                continue

            st.postprocessing.export_to_phy(recording_cache,
                                            sorter,
                                            output_folder='phy_' + i,
                                            grouping_property='group',
                                            verbose=True,
                                            recompute_info=True)

            #Open phy interface
            os.system('phy template-gui phy_' + i + '/params.py')

            #Remove detections curated as noise.
            sorting_phy_curated = se.PhySortingExtractor(
                'phy_' + i + '/', exclude_cluster_groups=['noise'])

            #Print waveforms of units
            w_wf = sw.plot_unit_templates(sorting=sorting_phy_curated,
                                          recording=recording_cache)
            plt.savefig('manual_' + i + '_unit_templates.pdf',
                        bbox_inches='tight')
            plt.savefig('manual_' + i + '_unit_templates.png',
                        bbox_inches='tight')
            plt.close()

            #Compute agreement matrix wrt consensus-based sorting.
            sorting_phy_consensus = se.PhySortingExtractor(
                'phy_AGR/', exclude_cluster_groups=['noise'])
            cmp = sc.compare_sorter_to_ground_truth(sorting_phy_curated,
                                                    sorting_phy_consensus)
            sw.plot_agreement_matrix(cmp)
            plt.savefig('agreement_matrix_' + i + '.pdf', bbox_inches='tight')
            plt.savefig('agreement_matrix_' + i + '.png', bbox_inches='tight')
            plt.close()

            #Access unit ID and firing rate.
            os.chdir('phy_' + i)
            spike_times = np.load('spike_times.npy')
            spike_clusters = np.load('spike_clusters.npy')
            #Find units curated as 'noise'
            noise_id = []
            with open("cluster_group.tsv") as fd:
                rd = csv.reader(fd, delimiter="\t", quotechar='"')
                for row in rd:
                    if row[1] == 'noise':
                        noise_id.append(int(row[0]))
            #Create a list with the unit IDs and remove those labeled as 'noise'
            some_list = np.unique(spike_clusters)
            some_list = some_list.tolist()
            for x in noise_id:
                print(x)
                some_list.remove(x)

            #Bin data in bins of 25ms
            #45 minutes
            bins = np.arange(start=0, stop=45 * 60 * fs + 1, step=.025 * fs)
            NData = np.zeros([
                np.unique(spike_clusters).shape[0] - len(noise_id),
                bins.shape[0] - 1
            ])

            cont = 0
            for x in some_list:
                #print(x)
                ind = (spike_clusters == x)
                fi = spike_times[ind]
                inds = np.histogram(fi, bins=bins)
                inds1 = inds[0]
                NData[cont, :] = inds1
                cont = cont + 1

            #Save activation matrix
            os.chdir("..")
            a = os.path.split(os.getcwd())[1]
            np.save('actmat_manual_' + i + '_' + a.split('_')[1], NData)
            np.save('unit_id_manual_' + i + '_' + a.split('_')[1], some_list)

    #End of for loop
    print("Stop the code here")
Example #5
0
def auto(recording_folder):
    os.chdir(recording_folder)

    #If sorter has already been run skip it.
    subfolders = [f.name for f in os.scandir(recording_folder) if f.is_dir()]
    if ('phy_AGR' in subfolders) or ('phy_MS4' in subfolders):
        print('Tetrode ' + recording_folder.split('_')[-1] +
              ' was previously sorted. Skipping')
        return
    """
    Adding Matlab-based sorters to path
    
    """

    #IronClust
    iron_path = "~/Documents/SpikeSorting/ironclust"
    ss.IronClustSorter.set_ironclust_path(os.path.expanduser(iron_path))
    ss.IronClustSorter.ironclust_path

    #HDSort
    #ss.HDSortSorter.set_hdsort_path('/home/adrian/Documents/SpikeSorting/HDsort')
    #ss.HDSortSorter.hdsort_path

    #Waveclus
    #ss.WaveClusSorter.set_waveclus_path('/home/adrian/Documents/SpikeSorting/wave_clus')
    #ss.WaveClusSorter.waveclus_path

    #Check if the recording has been preprocessed before and load it.
    # Else proceed with preprocessing.
    arr = os.listdir()

    #Load .continuous files
    recording = se.OpenEphysRecordingExtractor(recording_folder)
    channel_ids = recording.get_channel_ids()
    fs = recording.get_sampling_frequency()
    num_chan = recording.get_num_channels()

    print('Channel ids:', channel_ids)
    print('Sampling frequency:', fs)
    print('Number of channels:', num_chan)

    #!cat tetrode9.prb #Asks for prb file
    # os.system('cat /home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH/tetrode9.prb')
    #recording_prb = recording.load_probe_file('/home/adrian/Documents/SpikeSorting/Adrian_test_data/Irene_data/test_without_zero_main_channels/Tetrode_9_CH/tetrode.prb')
    recording_prb = recording.load_probe_file('tetrode.prb')

    print('Channels after loading the probe file:',
          recording_prb.get_channel_ids())
    print('Channel groups after loading the probe file:',
          recording_prb.get_channel_groups())

    #For testing only: Reduce recording.
    #recording_prb = se.SubRecordingExtractor(recording_prb, start_frame=100*fs, end_frame=420*fs)

    #Bandpass filter
    recording_cmr = st.preprocessing.bandpass_filter(recording_prb,
                                                     freq_min=300,
                                                     freq_max=6000)
    recording_cache = se.CacheRecordingExtractor(recording_cmr)

    print(recording_cache.get_channel_ids())
    print(recording_cache.get_channel_groups())
    print(recording_cache.get_num_frames() /
          recording_cache.get_sampling_frequency())

    #View installed sorters
    #ss.installed_sorters()
    #mylist = [f for f in glob.glob("*.txt")]

    #%% Run all channels. There are only a single tetrode channels anyway.

    #Create sub recording to avoid saving whole recording.Requirement from NWB to allow saving sorters data.
    recording_sub = se.SubRecordingExtractor(recording_cache,
                                             start_frame=200 * fs,
                                             end_frame=320 * fs)

    Sorters2Compare = []
    Sorters2CompareLabel = []
    SortersCount = []
    #Amount of detections per sorter

    #Klusta
    if 'sorting_KL_all.nwb' in arr:
        print('Loading Klusta')
        sorting_KL_all = se.NwbSortingExtractor('sorting_KL_all.nwb')
        if not (not (sorting_KL_all.get_unit_ids())):
            Sorters2Compare.append(sorting_KL_all)
            Sorters2CompareLabel.append('KL')

    else:
        t = time.time()
        sorting_KL_all = ss.run_klusta(recording_cache,
                                       output_folder='results_all_klusta',
                                       delete_output_folder=True)
        print('Found', len(sorting_KL_all.get_unit_ids()), 'units')
        time.time() - t
        #Save Klusta
        se.NwbRecordingExtractor.write_recording(recording_sub,
                                                 'sorting_KL_all.nwb')
        se.NwbSortingExtractor.write_sorting(sorting_KL_all,
                                             'sorting_KL_all.nwb')
        if not (not (sorting_KL_all.get_unit_ids())):
            Sorters2Compare.append(sorting_KL_all)
            Sorters2CompareLabel.append('KL')
    SortersCount.append(len(sorting_KL_all.get_unit_ids()))

    #Ironclust
    if 'sorting_IC_all.nwb' in arr:
        print('Loading Ironclust')
        sorting_IC_all = se.NwbSortingExtractor('sorting_IC_all.nwb')
        if not (not (sorting_IC_all.get_unit_ids())):
            Sorters2Compare.append(sorting_IC_all)
            Sorters2CompareLabel.append('IC')
        SortersCount.append(len(sorting_IC_all.get_unit_ids()))

    else:
        try:
            t = time.time()
            sorting_IC_all = ss.run_ironclust(recording_cache,
                                              output_folder='results_all_ic',
                                              delete_output_folder=True,
                                              filter=False)
            print('Found', len(sorting_IC_all.get_unit_ids()), 'units')
            time.time() - t
            #Save IC
            se.NwbRecordingExtractor.write_recording(recording_sub,
                                                     'sorting_IC_all.nwb')
            se.NwbSortingExtractor.write_sorting(sorting_IC_all,
                                                 'sorting_IC_all.nwb')
            if not (not (sorting_IC_all.get_unit_ids())):
                Sorters2Compare.append(sorting_IC_all)
                Sorters2CompareLabel.append('IC')
            SortersCount.append(len(sorting_IC_all.get_unit_ids()))
        except:
            print('Ironclust has failed')

    # #Waveclust
    # if 'sorting_waveclus_all.nwb' in arr:
    #     print('Loading waveclus')
    #     sorting_waveclus_all=se.NwbSortingExtractor('sorting_waveclus_all.nwb');
    #     if not(not(sorting_waveclus_all.get_unit_ids())):
    #         Sorters2Compare.append(sorting_waveclus_all);
    #         Sorters2CompareLabel.append('Waveclus');
    #     SortersCount.append(len(sorting_waveclus_all.get_unit_ids()))

    # else:
    #     t = time.time()
    #     try:
    #         sorting_waveclus_all = ss.run_waveclus(recording_cache, output_folder='results_all_waveclus',delete_output_folder=True)
    #         print('Found', len(sorting_waveclus_all.get_unit_ids()), 'units')
    #         time.time() - t
    #         #Save waveclus
    #         se.NwbRecordingExtractor.write_recording(recording_sub, 'sorting_waveclus_all.nwb')
    #         se.NwbSortingExtractor.write_sorting(sorting_waveclus_all, 'sorting_waveclus_all.nwb')
    #         if not(not(sorting_waveclus_all.get_unit_ids())):
    #             Sorters2Compare.append(sorting_waveclus_all);
    #             Sorters2CompareLabel.append('Waveclus');
    #         SortersCount.append(len(sorting_waveclus_all.get_unit_ids()))
    #     except:
    #         print('Waveclus cannot be run')

    #Herdingspikes
    if 'sorting_herdingspikes_all.nwb' in arr:
        print('Loading herdingspikes')
        sorting_herdingspikes_all = se.NwbSortingExtractor(
            'sorting_herdingspikes_all.nwb')
        if not (not (sorting_herdingspikes_all.get_unit_ids())):
            Sorters2Compare.append(sorting_herdingspikes_all)
            Sorters2CompareLabel.append('HS')
        SortersCount.append(len(sorting_herdingspikes_all.get_unit_ids()))

    else:
        try:
            t = time.time()
            sorting_herdingspikes_all = ss.run_herdingspikes(
                recording_cache,
                output_folder='results_all_herdingspikes',
                delete_output_folder=True)

            print('Found', len(sorting_herdingspikes_all.get_unit_ids()),
                  'units')
            time.time() - t
            #Save herdingspikes
            se.NwbRecordingExtractor.write_recording(
                recording_sub, 'sorting_herdingspikes_all.nwb')
            try:
                se.NwbSortingExtractor.write_sorting(
                    sorting_herdingspikes_all, 'sorting_herdingspikes_all.nwb')
            except TypeError:
                print("No units detected.  Can't save HerdingSpikes")
                os.remove("sorting_herdingspikes_all.nwb")
            if not (not (sorting_herdingspikes_all.get_unit_ids())):
                Sorters2Compare.append(sorting_herdingspikes_all)
                Sorters2CompareLabel.append('HS')
            SortersCount.append(len(sorting_herdingspikes_all.get_unit_ids()))

        except:
            print('Herdingspikes has failed')

    try:
        rmtree("results_all_herdingspikes")
    except:
        print('Removed leftover herdingspikes files')

    try:
        rmtree("results_all_herdingspikes")
    except:
        print('Removed leftover herdingspikes files')

    #Mountainsort4
    if 'sorting_mountainsort4_all.nwb' in arr:
        print('Loading mountainsort4')
        sorting_mountainsort4_all = se.NwbSortingExtractor(
            'sorting_mountainsort4_all.nwb')
        if not (not (sorting_mountainsort4_all.get_unit_ids())):
            Sorters2Compare.append(sorting_mountainsort4_all)
            Sorters2CompareLabel.append('MS4')

    else:
        t = time.time()
        sorting_mountainsort4_all = ss.run_mountainsort4(
            recording_cache,
            output_folder='results_all_mountainsort4',
            delete_output_folder=True,
            filter=False)
        print('Found', len(sorting_mountainsort4_all.get_unit_ids()), 'units')
        time.time() - t
        #Save mountainsort4
        se.NwbRecordingExtractor.write_recording(
            recording_sub, 'sorting_mountainsort4_all.nwb')
        se.NwbSortingExtractor.write_sorting(sorting_mountainsort4_all,
                                             'sorting_mountainsort4_all.nwb')
        if not (not (sorting_mountainsort4_all.get_unit_ids())):
            Sorters2Compare.append(sorting_mountainsort4_all)
            Sorters2CompareLabel.append('MS4')
    SortersCount.append(len(sorting_mountainsort4_all.get_unit_ids()))

    #Spykingcircus
    if 'sorting_spykingcircus_all.nwb' in arr:
        print('Loading spykingcircus')
        sorting_spykingcircus_all = se.NwbSortingExtractor(
            'sorting_spykingcircus_all.nwb')
        if not (not (sorting_spykingcircus_all.get_unit_ids())):
            Sorters2Compare.append(sorting_spykingcircus_all)
            Sorters2CompareLabel.append('SC')
        SortersCount.append(len(sorting_spykingcircus_all.get_unit_ids()))

    else:
        try:
            t = time.time()
            sorting_spykingcircus_all = ss.run_spykingcircus(
                recording_cache,
                output_folder='results_all_spykingcircus',
                delete_output_folder=True,
                filter=False)
            print('Found', len(sorting_spykingcircus_all.get_unit_ids()),
                  'units')
            time.time() - t
            #Save sorting_spykingcircus
            se.NwbRecordingExtractor.write_recording(
                recording_sub, 'sorting_spykingcircus_all.nwb')
            se.NwbSortingExtractor.write_sorting(
                sorting_spykingcircus_all, 'sorting_spykingcircus_all.nwb')
            if not (not (sorting_spykingcircus_all.get_unit_ids())):
                Sorters2Compare.append(sorting_spykingcircus_all)
                Sorters2CompareLabel.append('SC')
            SortersCount.append(len(sorting_spykingcircus_all.get_unit_ids()))
        except:
            print('Spykingcircus has failed')

    #Tridesclous
    if 'sorting_tridesclous_all.nwb' in arr:
        print('Loading tridesclous')
        try:
            sorting_tridesclous_all = se.NwbSortingExtractor(
                'sorting_tridesclous_all.nwb')
        except AttributeError:
            print("No units detected.  Can't load Tridesclous so will run it.")
            t = time.time()
            sorting_tridesclous_all = ss.run_tridesclous(
                recording_cache,
                output_folder='results_all_tridesclous',
                delete_output_folder=True)
            print('Found', len(sorting_tridesclous_all.get_unit_ids()),
                  'units')
            time.time() - t
            os.remove("sorting_tridesclous_all.nwb")
            #Save sorting_tridesclous
            se.NwbRecordingExtractor.write_recording(
                recording_sub, 'sorting_tridesclous_all.nwb')
            se.NwbSortingExtractor.write_sorting(
                sorting_tridesclous_all, 'sorting_tridesclous_all.nwb')
        if not (not (sorting_tridesclous_all.get_unit_ids())):
            Sorters2Compare.append(sorting_tridesclous_all)
            Sorters2CompareLabel.append('TRI')
        SortersCount.append(len(sorting_tridesclous_all.get_unit_ids()))

    else:
        try:
            t = time.time()
            sorting_tridesclous_all = ss.run_tridesclous(
                recording_cache,
                output_folder='results_all_tridesclous',
                delete_output_folder=True)
            print('Found', len(sorting_tridesclous_all.get_unit_ids()),
                  'units')
            time.time() - t
            #Save sorting_tridesclous
            se.NwbRecordingExtractor.write_recording(
                recording_sub, 'sorting_tridesclous_all.nwb')
            se.NwbSortingExtractor.write_sorting(
                sorting_tridesclous_all, 'sorting_tridesclous_all.nwb')
            if not (not (sorting_tridesclous_all.get_unit_ids())):
                Sorters2Compare.append(sorting_tridesclous_all)
                Sorters2CompareLabel.append('TRI')
            SortersCount.append(len(sorting_tridesclous_all.get_unit_ids()))

        except:
            print('Tridesclous failed')

    try:
        rmtree("results_all_tridesclous")
    except:
        print('Removed leftover tridesclous files')

    #Consensus based curation.
    print(Sorters2CompareLabel)
    print('Comparing sorters agreement. Please wait...')
    mcmp = sc.compare_multiple_sorters(Sorters2Compare, Sorters2CompareLabel)
    w = sw.plot_multicomp_agreement_by_sorter(mcmp)
    # plt.show()
    plt.savefig('consensus.pdf', bbox_inches='tight')
    plt.savefig('consensus.png', bbox_inches='tight')
    plt.close()

    w = sw.plot_multicomp_agreement(mcmp)
    plt.savefig('consensus_spikes.pdf', bbox_inches='tight')
    plt.savefig('consensus_spikes.png', bbox_inches='tight')
    plt.close()

    # #Use amount of sorters which give a value closest to 10 units.
    # agreed_units=[];
    # for x in [1,2,3,4,5]:
    #     agreement_sorting = mcmp.get_agreement_sorting(minimum_agreement_count=x)
    #     agreed_units.append(len(agreement_sorting.get_unit_ids()));
    # print(agreed_units)
    # print(agreed_units.index(min(agreed_units, key=lambda x:abs(x-10)))+1)

    # agreement_sorting = mcmp.get_agreement_sorting(minimum_agreement_count=
    #         agreed_units.index(min(agreed_units, key=lambda x:abs(x-10)))+1);

    # Use units with at least 2 sorters agreeing.
    agreement_sorting = mcmp.get_agreement_sorting(minimum_agreement_count=2)

    print(agreement_sorting.get_unit_ids())
    phy_folder_name = 'phy_AGR'
    if not (agreement_sorting.get_unit_ids()):  #If there is no agreement.
        # print('No consensus. Finding sorter with closest to expected amount of units')
        # print(Sorters2CompareLabel[SortersCount.index(min(SortersCount, key=lambda x:abs(x-10)))])
        # agreement_sorting=Sorters2Compare[SortersCount.index(min(SortersCount, key=lambda x:abs(x-10)))]
        print('No consensus. Using detections from MountainSort4')
        agreement_sorting = sorting_mountainsort4_all
        phy_folder_name = 'phy_MS4'

    st.postprocessing.export_to_phy(recording_cache,
                                    agreement_sorting,
                                    output_folder=phy_folder_name,
                                    grouping_property='group',
                                    verbose=True,
                                    recompute_info=True)

    # se.NwbRecordingExtractor.write_recording(recording_sub, 'agreement_sorting.nwb')
    # se.NwbSortingExtractor.write_sorting(agreement_sorting, 'agreement_sorting.nwb')

    # os.system('phy template-gui phy_AGR/params.py')
    # sorting_phy_curated = se.PhySortingExtractor('phy_AGR/', exclude_cluster_groups=['noise']);

    # se.NwbRecordingExtractor.write_recording(recording_sub, 'consensus_phy_curated.nwb')
    # se.NwbSortingExtractor.write_sorting(sorting_phy_curated, 'consensus_phy_curated.nwb')

    w_wf = sw.plot_unit_templates(sorting=agreement_sorting,
                                  recording=recording_cache)
    plt.savefig('unit_templates.pdf', bbox_inches='tight')
    plt.savefig('unit_templates.png', bbox_inches='tight')
    plt.close()

    #Access unit ID and firing rate.
    os.chdir(phy_folder_name)
    spike_times = np.load('spike_times.npy')
    spike_clusters = np.load('spike_clusters.npy')

    #Create a list with the unit IDs
    some_list = np.unique(spike_clusters)
    some_list = some_list.tolist()

    #Bin data in bins of 25ms
    #45 minutes
    bins = np.arange(start=0, stop=45 * 60 * fs + 1, step=.025 * fs)
    NData = np.zeros([np.unique(spike_clusters).shape[0], bins.shape[0] - 1])

    cont = 0
    for x in some_list:
        ind = (spike_clusters == x)
        fi = spike_times[ind]
        inds = np.histogram(fi, bins=bins)
        inds1 = inds[0]
        NData[cont, :] = inds1
        cont = cont + 1

    #Save activation matrix
    os.chdir("..")
    a = os.path.split(os.getcwd())[1]
    np.save('actmat_auto_' + a.split('_')[1], NData)
    np.save('unit_id_auto_' + a.split('_')[1], some_list)
Example #6
0
 def test_unittemplates(self):
     sw.plot_unit_templates(self._we)
Example #7
0
                                agreement_sorting,
                                output_folder=phy_folder_name,
                                grouping_property='group',
                                verbose=True,
                                recompute_info=True)

# se.NwbRecordingExtractor.write_recording(recording_sub, 'agreement_sorting.nwb')
# se.NwbSortingExtractor.write_sorting(agreement_sorting, 'agreement_sorting.nwb')

# os.system('phy template-gui phy_AGR/params.py')
# sorting_phy_curated = se.PhySortingExtractor('phy_AGR/', exclude_cluster_groups=['noise']);

# se.NwbRecordingExtractor.write_recording(recording_sub, 'consensus_phy_curated.nwb')
# se.NwbSortingExtractor.write_sorting(sorting_phy_curated, 'consensus_phy_curated.nwb')

w_wf = sw.plot_unit_templates(sorting=agreement_sorting,
                              recording=recording_cache)
plt.savefig('unit_templates.pdf', bbox_inches='tight')
plt.savefig('unit_templates.png', bbox_inches='tight')
plt.close()

#Access unit ID and firing rate.
os.chdir(phy_folder_name)
spike_times = np.load('spike_times.npy')
spike_clusters = np.load('spike_clusters.npy')

#Create a list with the unit IDs
some_list = np.unique(spike_clusters)
some_list = some_list.tolist()

#Bin data in bins of 25ms
#45 minutes