Example #1
0
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_loglevel(verbose=verbose)

    param_default = Param()

    overwrite = 0  # TODO: Not used. Why?
    fname_data = get_absolute_path(arguments.i)
    path_label = arguments.f
    method = arguments.method
    fname_output = arguments.o
    append_csv = arguments.append
    combine_labels = arguments.combine
    labels_user = arguments.l
    adv_param_user = arguments.param  # TODO: Not used. Why?
    slices = parse_num_list(arguments.z)
    levels = parse_num_list(arguments.vert)
    fname_vertebral_labeling = arguments.vertfile
    perslice = arguments.perslice
    perlevel = arguments.perlevel
    fname_normalizing_label = arguments.norm_file  # TODO: Not used. Why?
    normalization_method = arguments.norm_method  # TODO: Not used. Why?
    label_to_fix = arguments.fix_label  # TODO: Not used. Why?
    fname_output_metric_map = arguments.output_map  # TODO: Not used. Why?
    fname_mask_weight = arguments.mask_weighted  # TODO: Not used. Why?
    discard_negative_values = int(arguments.discard_neg_val)  # TODO: Not used. Why?

    # check if path_label is a file (e.g., single binary mask) instead of a folder (e.g., SCT atlas structure which
    # contains info_label.txt file)
    if os.path.isfile(path_label):
        # Label is a single file
        indiv_labels_ids = [0]
        indiv_labels_files = [path_label]
        combined_labels_ids = []
        label_struc = {0: LabelStruc(id=0,
                                     name=extract_fname(path_label)[1],
                                     filename=path_label)}
        # set path_label to empty string, because indiv_labels_files will replace it from now on
        path_label = ''
    elif os.path.isdir(path_label):
        # Labels is an SCT atlas folder structure
        # Parse labels according to the file info_label.txt
        # Note: the "combined_labels_*" is a list of single labels that are defined in the section defined by the keyword
        # "# Keyword=CombinedLabels" in info_label.txt.
        # TODO: redirect to appropriate Sphinx documentation
        # TODO: output Class instead of multiple variables.
        #   Example 1:
        #     label_struc[2].id = (2)
        #     label_struc[2].name = "left fasciculus cuneatus"
        #     label_struc[2].filename = "PAM50_atlas_02.nii.gz"
        #   Example 2:
        #     label_struc[51].id = (1, 2, 3, ..., 29)
        #     label_struc[51].name = "White Matter"
        #     label_struc[51].filename = ""  # no name because it is combined
        indiv_labels_ids, indiv_labels_names, indiv_labels_files, \
            combined_labels_ids, combined_labels_names, combined_labels_id_groups, map_clusters \
            = read_label_file(path_label, param_default.file_info_label)

        label_struc = {}
        # fill IDs for indiv labels
        for i_label in range(len(indiv_labels_ids)):
            label_struc[indiv_labels_ids[i_label]] = LabelStruc(id=indiv_labels_ids[i_label],
                                                                name=indiv_labels_names[i_label],
                                                                filename=indiv_labels_files[i_label],
                                                                map_cluster=[indiv_labels_ids[i_label] in map_cluster for
                                                                             map_cluster in map_clusters].index(True))
        # fill IDs for combined labels
        # TODO: problem for defining map_cluster: if labels overlap two regions, e.g. WM and GM (e.g. id=50),
        #  map_cluster will take value 0, which is wrong.
        for i_label in range(len(combined_labels_ids)):
            label_struc[combined_labels_ids[i_label]] = LabelStruc(id=combined_labels_id_groups[i_label],
                                                                   name=combined_labels_names[i_label],
                                                                   map_cluster=[indiv_labels_ids[i_label] in map_cluster for
                                                                                map_cluster in map_clusters].index(True))
    else:
        raise RuntimeError(path_label + ' does not exist')

    # check syntax of labels asked by user
    labels_id_user = check_labels(indiv_labels_ids + combined_labels_ids, parse_num_list(labels_user))
    nb_labels = len(indiv_labels_files)

    # Load data and systematically reorient to RPI because we need the 3rd dimension to be z
    printv('\nLoad metric image...', verbose)
    input_im = Image(fname_data).change_orientation("RPI")

    data = Metric(data=input_im.data, label='')
    # Load labels
    labels_tmp = np.empty([nb_labels], dtype=object)
    for i_label in range(nb_labels):
        im_label = Image(os.path.join(path_label, indiv_labels_files[i_label])).change_orientation("RPI")
        labels_tmp[i_label] = np.expand_dims(im_label.data, 3)  # TODO: generalize to 2D input label
    labels = np.concatenate(labels_tmp[:], 3)  # labels: (x,y,z,label)
    # Load vertebral levels
    if not levels:
        fname_vertebral_labeling = None

    # Get dimensions of data and labels
    nx, ny, nz = data.data.shape
    nx_atlas, ny_atlas, nz_atlas, nt_atlas = labels.shape

    # Check dimensions consistency between atlas and data
    if (nx, ny, nz) != (nx_atlas, ny_atlas, nz_atlas):
        printv('\nERROR: Metric data and labels DO NOT HAVE SAME DIMENSIONS.', 1, type='error')

    # Combine individual labels for estimation
    if combine_labels:
        # Add entry with internal ID value (99) which corresponds to combined labels
        label_struc[99] = LabelStruc(id=labels_id_user, name=','.join([str(i) for i in labels_id_user]),
                                     map_cluster=None)
        labels_id_user = [99]

    for id_label in labels_id_user:
        printv('Estimation for label: ' + label_struc[id_label].name, verbose)
        agg_metric = extract_metric(data, labels=labels, slices=slices, levels=levels, perslice=perslice,
                                    perlevel=perlevel, vert_level=fname_vertebral_labeling, method=method,
                                    label_struc=label_struc, id_label=id_label, indiv_labels_ids=indiv_labels_ids)

        save_as_csv(agg_metric, fname_output, fname_in=fname_data, append=append_csv)
        append_csv = True  # when looping across labels, need to append results in the same file
    display_open(fname_output)
Example #2
0
def main(fname_data,
         path_label,
         method,
         slices,
         levels,
         fname_output,
         labels_user,
         append_csv,
         fname_vertebral_labeling="",
         perslice=1,
         perlevel=1,
         verbose=1,
         combine_labels=True):
    """
    Extract metrics from MRI data based on mask (could be single file of folder to atlas)
    :param fname_data: data to extract metric from
    :param path_label: mask: could be single file or folder to atlas (which contains info_label.txt)
    :param method {'wa', 'bin', 'ml', 'map'}
    :param slices. Slices of interest. Accepted format:
           "0,1,2,3": slices 0,1,2,3
           "0:3": slices 0,1,2,3
    :param levels: Vertebral levels to extract metrics from. Should be associated with a template
           (e.g. PAM50/template/) or a specified file: fname_vertebral_labeling. Same format as slices_of_interest.
    :param fname_output:
    :param labels_user:
    :param append_csv: Append to csv file
    :param fname_normalizing_label:
    :param fname_vertebral_labeling: vertebral labeling to be used with vertebral_levels
    :param perslice: if user selected several slices, then the function outputs a metric within each slice
           instead of a single average output.
    :param perlevel: if user selected several levels, then the function outputs a metric within each vertebral level
           instead of a single average output.
    :param verbose
    :param combine_labels: bool: Combine labels into a single value
    :return:
    """

    # check if path_label is a file (e.g., single binary mask) instead of a folder (e.g., SCT atlas structure which
    # contains info_label.txt file)
    if os.path.isfile(path_label):
        # Label is a single file
        indiv_labels_ids = [0]
        indiv_labels_files = [path_label]
        combined_labels_ids = []
        label_struc = {
            0:
            LabelStruc(id=0,
                       name=extract_fname(path_label)[1],
                       filename=path_label)
        }
        # set path_label to empty string, because indiv_labels_files will replace it from now on
        path_label = ''
    elif os.path.isdir(path_label):
        # Labels is an SCT atlas folder structure
        # Parse labels according to the file info_label.txt
        # Note: the "combined_labels_*" is a list of single labels that are defined in the section defined by the keyword
        # "# Keyword=CombinedLabels" in info_label.txt.
        # TODO: redirect to appropriate Sphinx documentation
        # TODO: output Class instead of multiple variables.
        #   Example 1:
        #     label_struc[2].id = (2)
        #     label_struc[2].name = "left fasciculus cuneatus"
        #     label_struc[2].filename = "PAM50_atlas_02.nii.gz"
        #   Example 2:
        #     label_struc[51].id = (1, 2, 3, ..., 29)
        #     label_struc[51].name = "White Matter"
        #     label_struc[51].filename = ""  # no name because it is combined
        indiv_labels_ids, indiv_labels_names, indiv_labels_files, \
            combined_labels_ids, combined_labels_names, combined_labels_id_groups, map_clusters \
            = read_label_file(path_label, param_default.file_info_label)

        label_struc = {}
        # fill IDs for indiv labels
        for i_label in range(len(indiv_labels_ids)):
            label_struc[indiv_labels_ids[i_label]] = LabelStruc(
                id=indiv_labels_ids[i_label],
                name=indiv_labels_names[i_label],
                filename=indiv_labels_files[i_label],
                map_cluster=[
                    indiv_labels_ids[i_label] in map_cluster
                    for map_cluster in map_clusters
                ].index(True))
        # fill IDs for combined labels
        # TODO: problem for defining map_cluster: if labels overlap two regions, e.g. WM and GM (e.g. id=50),
        #  map_cluster will take value 0, which is wrong.
        for i_label in range(len(combined_labels_ids)):
            label_struc[combined_labels_ids[i_label]] = LabelStruc(
                id=combined_labels_id_groups[i_label],
                name=combined_labels_names[i_label],
                map_cluster=[
                    indiv_labels_ids[i_label] in map_cluster
                    for map_cluster in map_clusters
                ].index(True))
    else:
        raise RuntimeError(path_label + ' does not exist')

    # check syntax of labels asked by user
    labels_id_user = check_labels(indiv_labels_ids + combined_labels_ids,
                                  parse_num_list(labels_user))
    nb_labels = len(indiv_labels_files)

    # Load data and systematically reorient to RPI because we need the 3rd dimension to be z
    printv('\nLoad metric image...', verbose)
    input_im = Image(fname_data).change_orientation("RPI")

    data = Metric(data=input_im.data, label='')
    # Load labels
    labels_tmp = np.empty([nb_labels], dtype=object)
    for i_label in range(nb_labels):
        im_label = Image(os.path.join(
            path_label, indiv_labels_files[i_label])).change_orientation("RPI")
        labels_tmp[i_label] = np.expand_dims(
            im_label.data, 3)  # TODO: generalize to 2D input label
    labels = np.concatenate(labels_tmp[:], 3)  # labels: (x,y,z,label)
    # Load vertebral levels
    if vertebral_levels:
        im_vertebral_labeling = Image(
            fname_vertebral_labeling).change_orientation("RPI")
    else:
        im_vertebral_labeling = None

    # Get dimensions of data and labels
    nx, ny, nz = data.data.shape
    nx_atlas, ny_atlas, nz_atlas, nt_atlas = labels.shape

    # Check dimensions consistency between atlas and data
    if (nx, ny, nz) != (nx_atlas, ny_atlas, nz_atlas):
        printv('\nERROR: Metric data and labels DO NOT HAVE SAME DIMENSIONS.',
               1,
               type='error')

    # Combine individual labels for estimation
    if combine_labels:
        # Add entry with internal ID value (99) which corresponds to combined labels
        label_struc[99] = LabelStruc(id=labels_id_user,
                                     name=','.join(
                                         [str(i) for i in labels_id_user]),
                                     map_cluster=None)
        labels_id_user = [99]

    for id_label in labels_id_user:
        printv('Estimation for label: ' + label_struc[id_label].name, verbose)
        agg_metric = extract_metric(data,
                                    labels=labels,
                                    slices=slices,
                                    levels=levels,
                                    perslice=perslice,
                                    perlevel=perlevel,
                                    vert_level=im_vertebral_labeling,
                                    method=method,
                                    label_struc=label_struc,
                                    id_label=id_label,
                                    indiv_labels_ids=indiv_labels_ids)

        save_as_csv(agg_metric,
                    fname_output,
                    fname_in=fname_data,
                    append=append_csv)
        append_csv = True  # when looping across labels, need to append results in the same file
    display_open(fname_output)
def main(fname_data, path_label, method, slices, levels, fname_output, labels_user, append,
         fname_normalizing_label, normalization_method, label_to_fix, adv_param_user, fname_output_metric_map,
         fname_mask_weight, fname_vertebral_labeling="", perslice=1, perlevel=1, discard_negative_values=False,
         verbose=1):
    """
    Extract metrics from MRI data based on mask (could be single file of folder to atlas)
    :param fname_data: data to extract metric from
    :param path_label: mask: could be single file or folder to atlas (which contains info_label.txt)
    :param method:
    :param slices_of_interest. Accepted format:
           "0,1,2,3": slices 0,1,2,3
           "0:3": slices 0,1,2,3
    :param vertebral_levels: Vertebral levels to extract metrics from. Should be associated with a template
           (e.g. PAM50/template/) or a specified file: fname_vertebral_labeling. Same format as slices_of_interest.
    :param fname_output:
    :param labels_user:
    :param overwrite:
    :param fname_normalizing_label:
    :param normalization_method:
    :param label_to_fix:
    :param adv_param_user:
    :param fname_output_metric_map:
    :param fname_mask_weight:
    :param fname_vertebral_labeling: vertebral labeling to be used with vertebral_levels
    :param perslice: if user selected several slices, then the function outputs a metric within each slice
           instead of a single average output.
    :param perlevel: if user selected several levels, then the function outputs a metric within each vertebral level
           instead of a single average output.
    :param discard_negative_values: Bool: Discard negative voxels when computing metrics statistics
    :param verbose
    :return:
    """

    # check if path_label is a file (e.g., single binary mask) instead of a folder (e.g., SCT atlas structure which
    # contains info_label.txt file)
    if os.path.isfile(path_label):
        # Label is a single file
        indiv_labels_ids = [0]
        indiv_labels_names = [path_label]
        indiv_labels_files = [path_label]
        combined_labels_ids = []
        combined_labels_names = []
        combined_labels_id_groups = []
        map_clusters = []
        label_struc = {0: LabelStruc(id=0,
                                     name=sct.extract_fname(path_label)[1],
                                     filename=path_label)}
        # set path_label to empty string, because indiv_labels_files will replace it from now on
        path_label = ''
    elif os.path.isdir(path_label):
        # Labels is an SCT atlas folder structure
        # Parse labels according to the file info_label.txt
        # Note: the "combined_labels_*" is a list of single labels that are defined in the section defined by the keyword
        # "# Keyword=CombinedLabels" in info_label.txt.
        # TODO: redirect to appropriate Sphinx documentation
        # TODO: output Class instead of multiple variables.
        #   Example 1:
        #     label_struc[2].id = (2)
        #     label_struc[2].name = "left fasciculus cuneatus"
        #     label_struc[2].filename = "PAM50_atlas_02.nii.gz"
        #   Example 2:
        #     label_struc[51].id = (1, 2, 3, ..., 29)
        #     label_struc[51].name = "White Matter"
        #     label_struc[51].filename = ""  # no name because it is combined
        indiv_labels_ids, indiv_labels_names, indiv_labels_files, \
        combined_labels_ids, combined_labels_names, combined_labels_id_groups, map_clusters \
            = read_label_file(path_label, param_default.file_info_label)

        label_struc = {}
        # fill IDs for indiv labels
        for i_label in range(len(indiv_labels_ids)):
            label_struc[indiv_labels_ids[i_label]] = LabelStruc(id=indiv_labels_ids[i_label],
                                                                name=indiv_labels_names[i_label],
                                                                filename=indiv_labels_files[i_label],
                                                                map_cluster=[indiv_labels_ids[i_label] in map_cluster for
                                                                             map_cluster in map_clusters].index(True))
        # fill IDs for combined labels
        for i_label in range(len(combined_labels_ids)):
            label_struc[combined_labels_ids[i_label]] = LabelStruc(id=combined_labels_id_groups[i_label],
                                                                   name=combined_labels_names[i_label],
                                                                   map_cluster=[indiv_labels_ids[i_label] in map_cluster for
                                                                                map_cluster in map_clusters].index(True))
    else:
        sct.printv('\nERROR: ' + path_label + ' does not exist.', 1, 'error')

    # check syntax of labels asked by user
    labels_id_user = check_labels(indiv_labels_ids + combined_labels_ids, parse_num_list(labels_user))
    nb_labels = len(indiv_labels_files)

    # Load data and systematically reorient to RPI because we need the 3rd dimension to be z
    sct.printv('\nLoad metric image...', verbose)
    input_im = Image(fname_data).change_orientation("RPI")

    data = Metric(data=input_im.data, label='')
    # Load labels
    labels_tmp = np.empty([nb_labels], dtype=object)
    for i_label in range(nb_labels):
        im_label = Image(os.path.join(path_label, indiv_labels_files[i_label])).change_orientation("RPI")
        labels_tmp[i_label] = np.expand_dims(im_label.data, 3)  # TODO: generalize to 2D input label
    labels = np.concatenate(labels_tmp[:], 3)  # labels: (x,y,z,label)
    # Load vertebral levels
    if vertebral_levels:
        im_vertebral_labeling = Image(fname_vertebral_labeling).change_orientation("RPI")
    else:
        im_vertebral_labeling = None

        # Get dimensions of data and labels
    nx, ny, nz = data.data.shape
    nx_atlas, ny_atlas, nz_atlas, nt_atlas = labels.shape

    # Check dimensions consistency between atlas and data
    if (nx, ny, nz) != (nx_atlas, ny_atlas, nz_atlas):
        sct.printv('\nERROR: Metric data and labels DO NOT HAVE SAME DIMENSIONS.', 1, type='error')

    for id_label in labels_id_user:
        sct.printv('Estimation for label: '+label_struc[id_label].name, verbose)
        agg_metric = extract_metric(data, labels=labels, slices=slices, levels=levels, perslice=perslice,
                                    perlevel=perlevel, vert_level=im_vertebral_labeling, method=method,
                                    label_struc=label_struc, id_label=id_label, indiv_labels_ids=indiv_labels_ids)

        save_as_csv(agg_metric, fname_output, fname_in=fname_data, append=append)
        append = True  # when looping across labels, need to append results in the same file
    sct.display_open(fname_output)