Example #1
0
class ViaTemplate(__TempatePrimitive__):

    layer1 = param.LayerField(number=3)
    layer2 = param.LayerField(number=8)
    via_layer = param.LayerField(number=9)

    def create_elementals(self, elems):
        M1 = spira.ElementList()
        M2 = spira.ElementList()
        contacts = spira.ElementList()

        for e in elems:
            if e.player.purpose == RDD.PURPOSE.METAL:
                if e.player.layer == self.layer1:
                    M1 += e
                elif e.player.layer == self.layer2:
                    M2 += e
            if e.player.purpose == RDD.PURPOSE.PRIM.VIA:
                if e.player.layer == self.via_layer:
                    contacts += e

        for D in contacts:
            for M in M1:
                if D.polygon | M.polygon:
                    pp = D.polygon | M.polygon
                    # TODO: Apply DRC enclosure rule here.
                    D.ports[0]._update(name=D.name, layer=M.player.layer)
            for M in M2:
                if D.polygon | M.polygon:
                    pp = D.polygon | M.polygon
                    # TODO: Apply DRC enclosure rule here.
                    D.ports[1]._update(name=D.name, layer=M.player.layer)
        return elems
Example #2
0
class __ConnectLayer__(__ProcessLayer__):

    midpoint = param.MidPointField()

    layer1 = param.LayerField()
    layer2 = param.LayerField()

    port1 = param.DataField(fdef_name='create_port1')
    port2 = param.DataField(fdef_name='create_port2')

    def create_port1(self):
        port = Port(name='P1', midpoint=self.midpoint, gdslayer=self.layer1)
        return port

    def create_port2(self):
        port = Port(name='P2', midpoint=self.midpoint, gdslayer=self.layer2)
        return port

    def create_ports(self, ports):
        ports += self.port1
        ports += self.port2
        return ports

    def create_elementals(self, elems):
        super().create_elementals(elems)
        return elems
Example #3
0
class ArcRoute(spira.Route):

    gdslayer = param.LayerField(name='ArcLayer', number=91)
    radius = param.FloatField(default=5)
    width = param.FloatField(default=1)
    theta = param.FloatField(default=45)
    start_angle = param.FloatField(default=0)
    angle_resolution = param.FloatField(default=1)
    angle1 = param.DataField(fdef_name='create_angle1')
    angle2 = param.DataField(fdef_name='create_angle2')

    def create_angle1(self):
        angle1 = (self.start_angle + 0) * np.pi / 180
        return angle1

    def create_angle2(self):
        angle2 = (self.start_angle + self.theta + 0) * np.pi / 180
        return angle2

    def create_port_input(self):
        midpoint = self.radius * np.cos(self.angle1), self.radius * np.sin(
            self.angle1)
        orientation = self.start_angle - 0 + 180 * (self.theta < 0)
        port = spira.Term(name='P1',
                          midpoint=midpoint,
                          width=self.width,
                          length=0.2,
                          orientation=orientation + 180)
        return port

    def create_port_output(self):
        midpoint = self.radius * np.cos(self.angle2), self.radius * np.sin(
            self.angle2)
        orientation = self.start_angle + self.theta + 180 - 180 * (self.theta <
                                                                   0)
        port = spira.Term(name='P2',
                          midpoint=midpoint,
                          width=self.width,
                          length=0.2,
                          orientation=orientation + 180)
        return port

    def create_points(self, points):

        inner_radius = self.radius - self.width / 2.0
        outer_radius = self.radius + self.width / 2.0
        z = int(np.ceil(abs(self.theta) / self.angle_resolution))
        t = np.linspace(self.angle1, self.angle2, z)

        inner_points_x = (inner_radius * np.cos(t)).tolist()
        inner_points_y = (inner_radius * np.sin(t)).tolist()
        outer_points_x = (outer_radius * np.cos(t)).tolist()
        outer_points_y = (outer_radius * np.sin(t)).tolist()
        xpts = np.array(inner_points_x + outer_points_x[::-1])
        ypts = np.array(inner_points_y + outer_points_y[::-1])

        points = [[list(p) for p in list(zip(xpts, ypts))]]

        return points
Example #4
0
class PhysicalLayer(spira.Cell):

    points = param.ListField()
    layer = param.LayerField()

    def create_elementals(self, elems):
        for pp in self.points:
            elems += Rectangle(point1=pp[0], point2=pp[1], layer=self.layer)
        return elems
Example #5
0
class CMLayers(Cell):

    layer = param.LayerField()

    def create_elementals(self, elems):
        return elems

    def set_net(self):
        pass

    def get_net(self):
        pass
Example #6
0
class ArcSeries(spira.Cell):

    gdslayer = param.LayerField(number=91)
    radius = param.FloatField(default=20)
    #     radius = param.FloatField(default=20 * 1e6)
    width = param.FloatField(default=1.0)
    #     width = param.FloatField(default=1.0 * 1e6)
    angular_coverage = param.FloatField(default=30)
    num_steps = param.IntegerField(default=1)
    angle_resolution = param.FloatField(default=0.1)
    start_angle = param.IntegerField(default=0)
    direction = param.StringField(default='ccw')

    port1 = param.DataField()
    port2 = param.DataField()

    subarc = SubArcSeries

    def get_subarc_routes(self):
        D = SubArcSeries(gdslayer=self.gdslayer,
                         radius=self.radius,
                         width=self.width,
                         angular_coverage=self.angular_coverage,
                         num_steps=self.num_steps,
                         angle_resolution=self.angle_resolution,
                         start_angle=self.start_angle)

        s1 = spira.SRef(D)
        s2 = spira.SRef(D)

        s2.reflect(p1=[0, 0], p2=[1, 1])
        s2.connect(port='P2', destination=s1.ports['P2'])

        return s1, s2

    def create_elementals(self, elems):

        s1, s2 = self.get_subarc_routes()

        elems += s1
        elems += s2

        return elems

    def create_ports(self, ports):

        s1, s2 = self.get_subarc_routes()

        #         ports += s1.ports['P1'].modified_copy(name='Port_1')
        #         ports += s2.ports['P1'].modified_copy(name='Port_2')

        return ports
Example #7
0
class RouteBasic(spira.Cell):

    route = param.ShapeField()
    connect_layer = param.LayerField(
        doc='GDSII layer to which the route connects.')

    port1 = param.DataField(fdef_name='create_port1')
    port2 = param.DataField(fdef_name='create_port2')
    llayer = param.DataField(fdef_name='create_layer')

    def create_layer(self):
        ll = spira.Layer(number=self.connect_layer.number,
                         datatype=RDD.PURPOSE.TERM.datatype)
        return ll

    def create_elementals(self, elems):
        ply = spira.Polygons(shape=self.route, gdslayer=self.connect_layer)
        ply.rotate(angle=-90)
        elems += ply
        return elems

    def create_port1(self):
        term = spira.Term(name='TERM1',
                          midpoint=(0, 0),
                          width=self.route.width1,
                          length=0.2,
                          orientation=180,
                          gdslayer=self.llayer)
        term.rotate(angle=-90)
        return term

    def create_port2(self):
        term = spira.Term(name='TERM2',
                          midpoint=[self.route.x_dist, self.route.y_dist],
                          width=self.route.width2,
                          length=0.2,
                          orientation=0,
                          gdslayer=self.llayer)
        term.rotate(angle=-90)
        return term

    def create_ports(self, ports):

        ports += self.port1
        ports += self.port2

        return ports
Example #8
0
class GradualFractal(spira.Cell):
    """
    Creates a 90-degree bent waveguide the bending radius is
    gradually increased until it reaches the minimum
    value of the radius at the "angular coverage" angle.
    It essentially creates a smooth transition to a bent waveguide
    mode. User can control number of steps provided. Direction
    determined by start angle and cw or ccw switch with the
    default 10 "num_steps" and 15 degree coverage,
    effective radius is about 1.5*radius.
    """

    gdslayer = param.LayerField(number=91)
    radius = param.FloatField(default=20)
    #     radius = param.FloatField(default=20 * 1e6)
    width = param.FloatField(default=1.0)
    #     width = param.FloatField(default=1.0 * 1e6)
    angular_coverage = param.FloatField(default=20)
    num_steps = param.IntegerField(default=5)
    angle_resolution = param.FloatField(default=0.01)
    start_angle = param.IntegerField(default=0)
    direction = param.StringField(default='ccw')

    def create_elementals(self, elems):

        D = ArcSeries(gdslayer=self.gdslayer,
                      radius=self.radius,
                      width=self.width,
                      angular_coverage=self.angular_coverage,
                      num_steps=self.num_steps,
                      angle_resolution=self.angle_resolution,
                      start_angle=self.start_angle)

        # D.xmin, D.ymin = 0, 0

        # Orient to default settings...
        # D.reflect(p1=[0,0], p2=[1,1])
        # D.reflect(p1=[0,0], p2=[1,0])

        # D.rotate(angle=self.start_angle, center=D.center)
        # D.center = [0, 0]

        s1 = spira.SRef(D)
        elems += s1

        return elems
Example #9
0
class LabelAbstract(__Label__):

    gdslayer = param.LayerField()
    text = param.StringField()
    str_anchor = param.StringField(default='o')
    rotation = param.FloatField(default=0)
    magnification = param.FloatField(default=1)
    reflection = param.BoolField(default=False)
    texttype = param.IntegerField()
    gdspy_commit = param.BoolField()

    def __init__(self, position, **kwargs):
        super().__init__(position, **kwargs)

    def commit_to_gdspy(self, cell):
        if self.__repr__() not in list(LabelAbstract.__committed__.keys()):
            L = gdspy.Label(self.text,
                deepcopy(self.position),
                anchor='o',
                rotation=self.rotation,
                magnification=self.magnification,
                x_reflection=self.reflection,
                layer=self.gdslayer.number,
                texttype=self.texttype
            )
            cell.add(L)
            LabelAbstract.__committed__.update({self.__repr__():L})
        else:
            cell.add(LabelAbstract.__committed__[self.__repr__()])

    def reflect(self, p1=(0,1), p2=(0,0)):
        self.position = [self.position[0], -self.position[1]]
        self.rotation = self.rotation * (-1)
        self.rotation = np.mod(self.rotation, 360)
        return self

    def rotate(self, angle=45, center=(0,0)):
        self.position = self.__rotate__(self.position, angle=angle, center=[0, 0])
        self.rotation += angle
        self.rotation = np.mod(self.rotation, 360)
        return self

    def point_inside(self, polygon):
        return pyclipper.PointInPolygon(self.position, polygon) != 0

    def transform(self, transform):
        if transform['reflection']:
            self.reflect(p1=[0,0], p2=[1,0])
        if transform['rotation']:
            self.rotate(angle=transform['rotation'])
        if transform['midpoint']:
            self.translate(dx=transform['midpoint'][0], dy=transform['midpoint'][1])
        return self

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        c_label = self.modified_copy(position=self.position)
        if commit_to_gdspy:
            self.gdspy_commit = True
        return c_label

    def move(self, midpoint=(0,0), destination=None, axis=None):
        from spira.gdsii.elemental.port import __Port__

        if destination is None:
            destination = midpoint
            midpoint = [0,0]

        if issubclass(type(midpoint), __Port__):
            o = midpoint.midpoint
        elif np.array(midpoint).size == 2:
            o = midpoint
        elif midpoint in self.ports:
            o = self.ports[midpoint].midpoint
        else:
            raise ValueError("[PHIDL] [DeviceReference.move()] ``midpoint`` " +
                             "not array-like, a port, or port name")

        if issubclass(type(destination), __Port__):
            d = destination.midpoint
        elif np.array(destination).size == 2:
            d = destination
        elif destination in self.ports:
            d = self.ports[destination].midpoint
        else:
            raise ValueError("[PHIDL] [DeviceReference.move()] ``destination`` " +
                             "not array-like, a port, or port name")

        if axis == 'x':
            d = (d[0], o[1])
        if axis == 'y':
            d = (o[0], d[1])

        dx, dy = np.array(d) - o

        super().translate(dx, dy)

        return self
Example #10
0
class SubArcSeries(spira.Cell):

    gdslayer = param.LayerField(number=99)
    radius = param.FloatField(default=20)
    #     radius = param.FloatField(default=20 * 1e6)
    width = param.FloatField(default=1.0)
    #     width = param.FloatField(default=1.0 * 1e6)
    angular_coverage = param.FloatField(default=30)
    num_steps = param.IntegerField(default=1)
    angle_resolution = param.FloatField(default=0.1)
    start_angle = param.IntegerField(default=0)

    port1 = param.DataField()
    port2 = param.DataField()

    def _regular_bend(self, prev_port):
        """ Now connect a regular bend for
        the normal curved portion. """
        B = Arc(shape=ArcRoute(radius=self.radius,
                               width=self.width,
                               theta=45 - np.rad2deg(self.angular_coverage),
                               start_angle=self.angular_coverage,
                               angle_resolution=self.angle_resolution,
                               gdslayer=spira.Layer(number=88)))

        b = spira.SRef(B)

        b.connect(port='P1', destination=prev_port)

        p0 = b.ports['P2']

        self.port2 = spira.Term(
            name='P2',
            midpoint=p0.midpoint,
            #             midpoint=scu(p0.midpoint),
            width=p0.width,
            orientation=p0.orientation)

        return b

    def create_elementals(self, elems):

        self.angular_coverage = np.deg2rad(self.angular_coverage)
        inc_rad = (self.radius**-1) / self.num_steps
        angle_step = self.angular_coverage / self.num_steps

        print('inc_rad: {}'.format(inc_rad))
        print('angle_step: {}'.format(angle_step))

        arcs = []
        for x in range(self.num_steps):
            A = Arc(shape=ArcRoute(radius=1 / ((x + 1) * inc_rad),
                                   width=self.width,
                                   theta=np.rad2deg(angle_step),
                                   start_angle=x * np.rad2deg(angle_step),
                                   angle_resolution=self.angle_resolution,
                                   gdslayer=self.gdslayer))

            a = spira.SRef(A)
            elems += a
            arcs.append(a)
            if x > 0:
                a.connect(port='P1', destination=prevPort)
            prevPort = a.ports['P2']

        self.port1 = arcs[0].ports['P1']

        elems += self._regular_bend(prevPort)

        return elems

    def create_ports(self, ports):

        ports += self.port1
        ports += self.port2

        return ports
Example #11
0
class __Shape__(FieldInitializer):

    center = param.PointField()
    gdslayer = param.LayerField()
    clockwise = param.BoolField(default=False)
    points = param.PointArrayField(fdef_name='create_points')
    apply_merge = param.DataField(fdef_name='create_merged_points')
    simplify = param.DataField(fdef_name='create_simplified_points')
    edges = param.DataField(fdef_name='create_edge_lines')

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def create_points(self, points):
        return points

    def create_merged_points(self):
        """  """
        from spira.gdsii.utils import scale_polygon_up as spu
        from spira.gdsii.utils import scale_polygon_down as spd
        polygons = spu(self.points)
        self.points = []
        for poly in polygons:
            if pyclipper.Orientation(poly) is False:
                reverse_poly = pyclipper.ReversePath(poly)
                solution = pyclipper.SimplifyPolygon(reverse_poly)
            else:
                solution = pyclipper.SimplifyPolygon(poly)
            for sol in solution:
                self.points.append(sol)
        self.points = bool_operation(subj=self.points, method='union')
        self.points = spd(self.points)
        return self

    def create_simplified_points(self):
        """  """
        from shapely.geometry import Polygon as ShapelyPolygon
        value = 1
        polygons = self.points
        self.points = []
        for points in polygons:
            factor = (len(points) / 100) * 1e5 * value
            sp = ShapelyPolygon(points).simplify(factor)
            pp = [[p[0], p[1]] for p in sp.exterior.coords]
            self.points.append(pp)
        return self

    def reflect(self, p1=(0, 1), p2=(0, 0)):
        """ Reflect across a line. """
        points = np.array(self.points[0])
        p1 = np.array(p1)
        p2 = np.array(p2)
        if np.asarray(points).ndim == 1:
            t = np.dot((p2 - p1), (points - p1)) / norm(p2 - p1)**2
            pts = 2 * (p1 + (p2 - p1) * t) - points
        if np.asarray(points).ndim == 2:
            pts = np.array([0, 0])
            for p in points:
                t = np.dot((p2 - p1), (p - p1)) / norm(p2 - p1)**2
                r = np.array(2 * (p1 + (p2 - p1) * t) - p)
                pts = np.vstack((pts, r))
        self.points = [pts]
        return self

    def rotate(self, angle=45, center=(0, 0)):
        """ Rotate points with an angle around a center. """
        points = np.array(self.points[0])
        angle = angle * np.pi / 180
        ca = np.cos(angle)
        sa = np.sin(angle)
        sa = np.array((-sa, sa))
        c0 = np.array(center)
        if np.asarray(points).ndim == 2:
            pts = (points - c0) * ca + (points - c0)[:, ::-1] * sa + c0
            pts = np.round(pts, 6)
        if np.asarray(points).ndim == 1:
            pts = (points - c0) * ca + (points - c0)[::-1] * sa + c0
            pts = np.round(pts, 6)
        self.points = [pts]
        return self

    @property
    def orientation(self):
        """ Returns the orientation of the shape: 
        +1(counterclock) or -1(clock) """
        # FIXME: Error with multiple shapes: [[[s1], [s2]]]
        pts = self.points[0]
        T = np.roll(np.roll(pts, 1, 1), 1, 0)
        return -np.sign(sum(np.diff(pts * T, 1, 1)))

    @property
    def area(self):
        """ Returns the area of the shape. """
        pts = self.points[0]
        T = np.roll(np.roll(pts, 1, 1), 1, 0)
        return sum(abs(np.diff(pts * T, 1, 1))) * 0.5

    @property
    def count(self):
        """ number of points in the shape """
        return self.__len__()

    @property
    def reverse(self):
        pass

    def move(self, pos):
        p = np.array([pos[0], pos[1]])
        self.points += p
        return self

    def transform(self):
        pass

    def point_inside(self):
        pass

    def index(self, item):
        pass
Example #12
0
 class CellA(spira.Cell):
     layer = param.LayerField(number=18, datatype=1)
     boolean = param.BoolField(default=False)
     fvalue = param.FloatField(default=0.0)
Example #13
0
class PhysicalLayer(__Layer__):
    """

    """

    doc = param.StringField()
    layer = param.LayerField()
    purpose = PurposeLayerField()
    data = param.DataField(default=ProcessTree())

    def __init__(self, **kwargs):
        ElementalInitializer.__init__(self, **kwargs)

    def __repr__(self):
        string = '[SPiRA: PhysicalLayer] (layer \'{}\', symbol \'{}\')'
        return string.format(self.layer.name, self.purpose.symbol)

    def __str__(self):
        return self.__repr__()

    def __eq__(self, other):
        if isinstance(other, PhysicalLayer):
            return other.key == self.key
        # elif isinstance(other, Layer):
        #     return other.number == self.layer.number
        elif isinstance(other, int):
            return other == self.layer.number
        else:
            raise ValueError('Not Implemented!')

    def __neq__(self, other):
        if isinstance(other, PhysicalLayer):
            return other.key != self.key
        # elif isinstance(other, Layer):
        #     return other.number != self.layer.number
        elif isinstance(other, int):
            return other != self.layer.number
        else:
            raise ValueError('Not Implemented!')
    
    # def __add__(self, other):
    #     if isinstance(other, PhysicalLayer):
    #         d = self.datatype + other.datatype
    #     elif isinstance(other, int):
    #         d = self.datatype + other
    #     else:
    #         raise ValueError('Not Implemented')
    #     return PurposeLayer(datatype=d)

    # def __iadd__(self, other):
    #     if isinstance(other, PhysicalLayer):
    #         self.datatype += other.datatype
    #     elif isinstance(other, int):
    #         self.datatype += other
    #     else:
    #         raise ValueError('Not Implemented')
    #     return self

    @property
    def key(self):
        return (self.layer.number, self.purpose.symbol)
Example #14
0
class __DoubleLayerDesignRule__(__DesignRule__):
    """ Rule applying to a specific layer """
    layer1 = param.LayerField()
    layer2 = param.LayerField()
Example #15
0
class CGLayers(Cell):

    layer = param.LayerField()

    def create_elementals(self, elems):
        return elems
Example #16
0
class PortAbstract(__Port__):

    name = param.StringField()
    midpoint = param.MidPointField()
    orientation = param.IntegerField()
    parent = param.DataField()
    gdslayer = param.LayerField(name='PortLayer', number=64)
    poly_layer = param.LayerField(name='PortLayer', number=64)
    text_layer = param.LayerField(name='PortLayer', number=63)

    def __init__(self, port=None, polygon=None, **kwargs):
        super().__init__(**kwargs)

        self.orientation = np.mod(self.orientation, 360)

        L = spira.Label(position=self.midpoint,
                        text=self.name,
                        gdslayer=self.gdslayer,
                        texttype=self.text_layer.number)
        self.label = L
        self.arrow = None

    @property
    def endpoints(self):
        dx = self.width / 2 * np.cos((self.orientation - 90) * np.pi / 180)
        dy = self.width / 2 * np.sin((self.orientation - 90) * np.pi / 180)
        left_point = self.midpoint - np.array([dx, dy])
        right_point = self.midpoint + np.array([dx, dy])
        return np.array([left_point, right_point])

    @endpoints.setter
    def endpoints(self, points):
        p1, p2 = np.array(points[0]), np.array(points[1])
        self.midpoint = (p1 + p2) / 2
        dx, dy = p2 - p1
        self.orientation = np.arctan2(dx, dy) * 180 / np.pi
        self.width = np.sqrt(dx**2 + dy**2)

    @property
    def normal(self):
        dx = np.cos((self.orientation) * np.pi / 180)
        dy = np.sin((self.orientation) * np.pi / 180)
        return np.array([self.midpoint, self.midpoint + np.array([dx, dy])])

    def point_inside(self, polygon):
        return pyclipper.PointInPolygon(self.midpoint, polygon) != 0

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        c_port = self.modified_copy(midpoint=self.midpoint)
        if commit_to_gdspy:
            self.gdspy_write = True
        return c_port

    def commit_to_gdspy(self, cell):
        if self.__repr__() not in list(__Port__.__committed__.keys()):
            # self.polygon.rotate(angle=self.orientation)
            # self.polygon.move(midpoint=self.polygon.center, destination=self.midpoint)
            self.polygon.commit_to_gdspy(cell)
            self.label.commit_to_gdspy(cell)
            if self.arrow:
                # print(self.orientation)
                # self.arrow.rotate(angle=45)
                # self.arrow.rotate(angle=90)
                # self.arrow.rotate(angle=90-self.orientation)
                self.arrow.move(midpoint=self.arrow.center,
                                destination=self.midpoint)
                self.arrow.commit_to_gdspy(cell)
            __Port__.__committed__.update({self.__repr__(): self})

    def reflect(self):
        """ Reflect around the x-axis. """
        self.midpoint = [self.midpoint[0], -self.midpoint[1]]
        self.orientation = -self.orientation
        self.orientation = np.mod(self.orientation, 360)

        self.polygon.reflect()

        if self.arrow:
            self.arrow.reflect()

        return self

    def rotate(self, angle=45, center=(0, 0)):
        """ Rotate port around the center with angle. """
        self.midpoint = self.__rotate__(self.midpoint,
                                        angle=angle,
                                        center=center)
        self.orientation += angle
        self.orientation = np.mod(self.orientation, 360)

        self.polygon.rotate(angle=self.orientation)

        if self.arrow:
            # self.arrow.rotate(angle=angle)
            self.arrow.rotate(angle=np.mod(angle, 90))

        return self

    def translate(self, dx, dy):
        """ Translate port by dx and dy. """
        self.midpoint = self.midpoint + np.array([dx, dy])
        return self

    def move(self, midpoint=(0, 0), destination=None, axis=None):
        from spira.gdsii.elemental.port import __Port__

        if destination is None:
            destination = midpoint
            midpoint = [0, 0]

        if issubclass(type(midpoint), __Port__):
            o = midpoint.midpoint
        elif np.array(midpoint).size == 2:
            o = midpoint
        elif midpoint in self.ports:
            o = self.ports[midpoint].midpoint
        else:
            raise ValueError("[PHIDL] [DeviceReference.move()] ``midpoint`` " +
                             "not array-like, a port, or port name")

        if issubclass(type(destination), __Port__):
            d = destination.midpoint
        elif np.array(destination).size == 2:
            d = destination
        elif destination in self.ports:
            d = self.ports[destination].midpoint
        else:
            raise ValueError(
                "[PHIDL] [DeviceReference.move()] ``destination`` " +
                "not array-like, a port, or port name")

        if axis == 'x':
            d = (d[0], o[1])
        if axis == 'y':
            d = (o[0], d[1])

        dx, dy = np.array(d) - o

        self.translate(dx, dy)

        self.label.move(midpoint=self.label.position,
                        destination=self.midpoint)
        self.polygon.move(midpoint=self.polygon.center,
                          destination=self.midpoint)
        if self.arrow:
            self.arrow.move(midpoint=self.polygon.center,
                            destination=self.midpoint)

        return self

    def stretch(self, stretch_class):
        """ Stretch port by with the given stretch class. """
        p = stretch_class.apply(self.midpoint)
        self.midpoint = p
        return self

    def transform(self, T):
        """ Transform port with the given transform class. """
        if T['reflection']:
            self.reflect()
            self.label.reflect()
            self.polygon.reflect()
            if self.arrow:
                self.arrow.reflect()
        if T['rotation']:
            self.rotate(angle=T['rotation'], center=(0, 0))
            self.label.rotate(angle=T['rotation'])
            self.polygon.rotate(angle=T['rotation'])
            if self.arrow:
                self.arrow.rotate(angle=T['rotation'])
        if T['midpoint']:
            self.translate(dx=T['midpoint'][0], dy=T['midpoint'][1])
            self.label.move(midpoint=self.label.position,
                            destination=self.midpoint)
            self.polygon.move(midpoint=self.polygon.center,
                              destination=self.midpoint)
            if self.arrow:
                self.arrow.move(midpoint=self.polygon.center,
                                destination=self.midpoint)

        return self

    def _update(self, name, layer):
        ll = deepcopy(layer)
        ll.datatype = 65
        self.polygon.gdslayer = ll
        self.label.gdslayer = ll
Example #17
0
class MeshAbstract(__Mesh__):
    """ Class that connects a meshio generated mesh with
    a networkx generated graph of the set of polygons. """

    name = param.StringField()
    layer = param.LayerField()
    point_data = param.ElementListField()
    cell_data = param.ElementListField()
    field_data = param.ElementListField()
    node_sets = param.ElementListField()
    gmsh_periodic = param.ElementListField()

    mesh_graph = param.DataField(fdef_name='create_mesh_graph')

    def __init__(self, polygons, points, cells, **kwargs):
        super().__init__(polygons, points, cells, **kwargs)

    def create_mesh_graph(self):
        """ Create a graph from the meshed geometry. """

        ll = len(self.points)
        A = np.zeros((ll, ll), dtype=np.int64)

        for n, triangle in enumerate(self.__triangles__()):
            self.add_edges(n, triangle, A)

        for n, triangle in enumerate(self.__triangles__()):
            self.add_positions(n, triangle)

    def add_edges(self, n, tri, A):
        def update_adj(self, t1, adj_mat, v_pair):
            if (adj_mat[v_pair[0]][v_pair[1]] != 0):
                t2 = adj_mat[v_pair[0]][v_pair[1]] - 1
                self.g.add_edge(t1, t2, label=None)
            else:
                adj_mat[v_pair[0]][v_pair[1]] = t1 + 1
                adj_mat[v_pair[1]][v_pair[0]] = t1 + 1

        v1 = [tri[0], tri[1], tri[2]]
        v2 = [tri[1], tri[2], tri[0]]

        for v_pair in list(zip(v1, v2)):
            update_adj(self, n, A, v_pair)

    def add_positions(self, n, tri):
        pp = self.points
        n1, n2, n3 = pp[tri[0]], pp[tri[1]], pp[tri[2]]

        sum_x = 1e+8 * (n1[0] + n2[0] + n3[0]) / 3.0
        sum_y = 1e+8 * (n1[1] + n2[1] + n3[1]) / 3.0

        self.g.node[n]['vertex'] = tri
        self.g.node[n]['pos'] = [sum_x, sum_y]

    def __triangles__(self):
        if 'triangle' not in self.cells:
            raise ValueError('Triangle not found in cells')
        return self.cells['triangle']

    def __physical_triangles__(self):
        if 'triangle' not in self.cell_data[0]:
            raise ValueError('Triangle not in meshio cell_data')
        if 'gmsh:physical' not in self.cell_data[0]['triangle']:
            raise ValueError('Physical not found ing meshio triangle')
        return self.cell_data[0]['triangle']['gmsh:physical'].tolist()

    def __layer_triangles_dict__(self):
        """
        Arguments
        ---------
        tri : list
            The surface_id of the triangle
            corresponding to the index value.
        key -> 5_0_1 (layer_datatype_polyid)
        value -> [1 2] (1=surface_id 2=triangle)
        """

        triangles = {}
        for name, value in self.field_data[0].items():
            for n in self.g.nodes():
                surface_id = value[0]
                ptriangles = self.__physical_triangles__()
                if ptriangles[n] == surface_id:
                    layer = int(name.split('_')[0])
                    datatype = int(name.split('_')[1])
                    key = (layer, datatype)
                    if key in triangles:
                        triangles[key].append(n)
                    else:
                        triangles[key] = [n]
        return triangles

    def __triangle_nodes__(self):
        """ Get triangle field_data in list form. """

        nodes = []
        for v in self.__layer_triangles_dict__().values():
            nodes.extend(v)

        triangles = {}
        for n in nodes:
            for node, triangle in enumerate(self.__triangles__()):
                if n == node:
                    triangles[n] = triangle
        return triangles

    def __point_data__(self):
        pass

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        return self

    def flatten(self):
        return [self]

    def commit_to_gdspy(self, cell):
        pass

    def transform(self, transform):
        return self
Example #18
0
class __Manhattan__(spira.Cell):

    port1 = param.DataField()
    port2 = param.DataField()

    length = param.FloatField(default=20)
    gdslayer = param.LayerField(number=13)
    radius = param.IntegerField(default=1)
    bend_type = param.StringField(default='circular')

    b1 = param.DataField(fdef_name='create_arc_bend_1')
    b2 = param.DataField(fdef_name='create_arc_bend_2')

    p1 = param.DataField(fdef_name='create_port1_position')
    p2 = param.DataField(fdef_name='create_port2_position')

    quadrant_one = param.DataField(fdef_name='create_quadrant_one')
    quadrant_two = param.DataField(fdef_name='create_quadrant_two')
    quadrant_three = param.DataField(fdef_name='create_quadrant_three')
    quadrant_four = param.DataField(fdef_name='create_quadrant_four')

    def _generate_route(self, p1, p2):
        route = RouteShape(port1=p1,
                           port2=p2,
                           path_type='straight',
                           width_type='straight')
        R1 = RouteBasic(route=route, connect_layer=self.gdslayer)
        r1 = spira.SRef(R1)
        r1.rotate(angle=p2.orientation - 180, center=R1.port1.midpoint)
        r1.move(midpoint=(0, 0), destination=p1.midpoint)
        return r1

    def create_port1_position(self):
        p1 = [self.port1.midpoint[0], self.port1.midpoint[1]]
        if self.port1.orientation == 90:
            p1 = [self.port1.midpoint[1], -self.port1.midpoint[0]]
        if self.port1.orientation == 180:
            p1 = [-self.port1.midpoint[0], -self.port1.midpoint[1]]
        if self.port1.orientation == 270:
            p1 = [-self.port1.midpoint[1], self.port1.midpoint[0]]
        return p1

    def create_port2_position(self):
        p2 = [self.port2.midpoint[0], self.port2.midpoint[1]]
        if self.port1.orientation == 90:
            p2 = [self.port2.midpoint[1], -self.port2.midpoint[0]]
        if self.port1.orientation == 180:
            p2 = [-self.port2.midpoint[0], -self.port2.midpoint[1]]
        if self.port1.orientation == 270:
            p2 = [-self.port2.midpoint[1], self.port2.midpoint[0]]
        return p2

    def create_arc_bend_1(self):
        if self.bend_type == 'circular':
            B1 = Arc(shape=ArcRoute(
                radius=self.radius,
                width=self.port1.width,
                gdslayer=self.gdslayer,
                # gdslayer=spira.Layer(number=18),
                start_angle=0,
                theta=90))
            return spira.SRef(B1)

    def create_arc_bend_2(self):
        if self.bend_type == 'circular':
            B2 = Arc(shape=ArcRoute(
                radius=self.radius,
                width=self.port1.width,
                gdslayer=self.gdslayer,
                # gdslayer=spira.Layer(number=18),
                start_angle=0,
                theta=-90))
            return spira.SRef(B2)
Example #19
0
class PolygonAbstract(__Polygon__):

    gdslayer = param.LayerField()
    gdspy_commit = param.BoolField()
    clockwise = param.BoolField(default=True)

    nodes = param.DataField(fdef_name='create_nodes')
    edges = param.DataField(fdef_name='create_edges')

    def __init__(self, shape, **kwargs):
        from spira.lgm.shapes.shape import __Shape__
        from spira.lgm.shapes.shape import Shape

        if issubclass(type(shape), __Shape__):
            self.shape = shape
        elif isinstance(shape, (list, set, np.ndarray)):
            self.shape = Shape(points=shape)
        else:
            raise ValueError('Shape type not supported!')

        ElementalInitializer.__init__(self, **kwargs)
        gdspy.PolygonSet.__init__(self,
                                  self.shape.points,
                                  layer=self.gdslayer.number,
                                  datatype=self.gdslayer.datatype,
                                  verbose=False)

    def create_nodes(self):
        """ Created nodes of each point in the polygon array.
        Converting a point to a node allows us to bind
        other objects to that specific node or point. """
        pass

    def create_edges(self):
        """ A list of tuples containing two nodes. """
        pass

    def move_edge(self):
        pass

    def commit_to_gdspy(self, cell):
        if self.__repr__() not in list(PolygonAbstract.__committed__.keys()):
            ply = deepcopy(self.shape.points)
            P = gdspy.PolygonSet(ply, self.gdslayer.number,
                                 self.gdslayer.datatype)
            cell.add(P)
            PolygonAbstract.__committed__.update({self.__repr__(): P})
        else:
            cell.add(PolygonAbstract.__committed__[self.__repr__()])

    def flat_copy(self, level=-1, commit_to_gdspy=False):
        elems = []
        for points in self.shape.points:
            c_poly = self.modified_copy(shape=deepcopy([points]),
                                        gdspy_commit=self.gdspy_commit)
            elems.append(c_poly)
            if commit_to_gdspy:
                self.gdspy_commit = True
        return elems

    def merge(self, other):
        if isinstance(other, (list, set)):
            pass
        elif isinstance(other, Polygons):
            pass
        else:
            raise ValueError('Type is not supported for Polygon merging.')

    def transform(self, transform):
        if transform['reflection']:
            self.reflect(p1=[0, 0], p2=[1, 0])
        if transform['rotation']:
            self.rotate(angle=transform['rotation'])
        if transform['midpoint']:
            self.translate(dx=transform['midpoint'][0],
                           dy=transform['midpoint'][1])
        self.shape.points = self.polygons
        return self

    def reflect(self, p1=(0, 1), p2=(0, 0)):
        for n, points in enumerate(self.shape.points):
            self.shape.points[n] = self.__reflect__(points, p1, p2)
        self.shape.points = self.polygons
        return self

    def rotate(self, angle=45, center=(0, 0)):
        super().rotate(angle=angle * np.pi / 180, center=center)
        self.shape.points = self.polygons
        return self

    def translate(self, dx, dy):
        super().translate(dx=dx, dy=dy)
        self.shape.points = self.polygons
        return self

    def stretch(self, stretch_class):
        p = stretch_class.apply_to_polygon(self.points[0])
        self.shape.points = [np.array(p)]
        return self

    def move(self, midpoint=(0, 0), destination=None, axis=None):
        from spira.gdsii.elemental.port import __Port__
        """ Moves elements of the Device from the midpoint point to the destination. Both
         midpoint and destination can be 1x2 array-like, Port, or a key
         corresponding to one of the Ports in this device """

        if destination is None:
            destination = midpoint
            midpoint = [0, 0]

        if issubclass(type(midpoint), __Port__):
            o = midpoint.midpoint
        elif np.array(midpoint).size == 2:
            o = midpoint
        elif midpoint in self.ports:
            o = self.ports[midpoint].midpoint
        else:
            raise ValueError("[PHIDL] [DeviceReference.move()] ``midpoint`` " +
                             "not array-like, a port, or port name")

        if issubclass(type(destination), __Port__):
            d = destination.midpoint
        elif np.array(destination).size == 2:
            d = destination
        elif destination in self.ports:
            d = self.ports[destination].midpoint
        else:
            raise ValueError(
                "[PHIDL] [DeviceReference.move()] ``destination`` " +
                "not array-like, a port, or port name")

        if axis == 'x':
            d = (d[0], o[1])
        if axis == 'y':
            d = (o[0], d[1])

        dx, dy = np.array(d) - o

        self.translate(dx, dy)

        return self

    def fast_boolean(self, other, operation):
        mm = gdspy.fast_boolean(self.shape.points,
                                other.shape.points,
                                operation=operation)
        return Polygons(shape=mm.points, gdslayer=self.gdslayer)