Example #1
0
def bezier_traj(cs_ddcs, init_dc_ddc = (zero3,zero3), end_dc_ddc = (zero3,zero3)):
	assert len(cs_ddcs) >= 2, "cannot create com trajectory with less than 2 points"
	#creating waypoints for curve	
	waypoints = matrix([ c	for (c,_) in cs_ddcs]).transpose()
	c = curve_constraints();
	c.init_vel = matrix(init_dc_ddc[0]);
	c.end_vel  = matrix(end_dc_ddc[0]);
	c.init_acc = matrix(init_dc_ddc[1]);
	c.end_acc  = matrix(end_dc_ddc[1]);
	
	c_t = bezier(waypoints, c)
	return __compute_c_ddc_t(c_t), c_t
Example #2
0
prim = a.compute_primitive(1)

for i in range(10):
	t = float(i) / 10.
	assert(a(t) == prim.derivate(t,1)).all()
assert(prim(0) == matrix([0.,0.,0.])).all()

prim = a.compute_primitive(2)
for i in range(10):
	t = float(i) / 10.
	assert(a(t) == prim.derivate(t,2)).all()
assert(prim(0) == matrix([0.,0.,0.])).all()


#testing bezier with constraints
c = curve_constraints();
c.init_vel = matrix([0.,1.,1.]);
c.end_vel  = matrix([0.,1.,1.]);
c.init_acc = matrix([0.,1.,-1.]);
c.end_acc  = matrix([0.,100.,1.]);


a = bezier(waypoints,c)
assert norm(a.derivate(0,1) - c.init_vel) < 1e-10
assert norm(a.derivate(1,2) - c.end_acc) < 1e-10


#testing polynom function
a = polynom(waypoints)
a = polynom(waypoints, -1., 3.)
a.min()
Example #3
0
	def go(c_t):
	
		w_t = get_w_of_t(c_t)
		#~ print "c(0)\n" + str(c_t(0))
		#~ print "c(1)\n" + str(c_t(1))
		#~ print "w(0)\n" + str(w_t(0))
		#~ print "w(1)\n" + str(w_t(1))
		H = H2
		h = zeros(H.shape[0])
		print "assert o,ot values are ok"
		assert ((H.dot(w_t(0.))<=0.01).all())
		assert ((H.dot(w_t(1.))<=0.01).all())
		
		c_of_t_from_w = get_c_of_t_from_w(w_t,c_t)
		
		print "initial w ", w_t(0.6)
		success, x_proj = qp_ineq_6D_orthogonal(w_t(0.6), H, h)
		print "found", x_proj
		
		#check that found point is feasible
		print "check that found point is feasible ", (H.dot(x_proj)<=0.01).all()
		
		P = zeros([6,6]); P[3:6,:3] = identity(3)
		print "check that w1 and w2 are indeed orthogonal ", norm(x_proj.transpose().dot(P).dot(x_proj)**2) < 0.001
		
		print "create bezier curves using  found point, and initial and final points ... "
		waypoints = matrix([ w_t(0), x_proj, w_t(1) ]).transpose()
		w_t_proj = bezier6(waypoints)
		
		print "check that initial points is reachd ", norm( asarray(w_t_proj(0)).flatten() - w_t(0)) < 0.001
		print "check that final point is reachd ",  norm( asarray(w_t_proj(1.)).flatten() - w_t(1)) < 0.001
		
		print "check that all values in between are such that w1 and w2 are orthogonal AND within H"
		safe = True
		for i in range(100):
			w_i = asarray(w_t_proj(i*0.01)).flatten()
			if not (H.dot(w_i)<=0.01).all():
				print "fail at stability check at value ", i,  " ",  H.dot(w_i).max()
				safe = False
				break 
			if not (norm(x_proj.transpose().dot(P).dot(x_proj)**2) < 0.001):
				print "fail at orthogonality check at value ", i , " " , norm(x_proj.transpose().dot(P).dot(x_proj)**2)
				safe = False
				break
		
		if safe:
			print "w_t_proj is sane !"
			
		print "reconstructing c of t"
		
		w_ref = asarray(w_t_proj(0.)).flatten()
		c_ref = asarray(c_t(0.)).flatten()
		
		print "first c ", c_ref
		"solving for closest c with w_ref"
		res, c_new = qp_ineq_3D_line(c_ref, w_ref)
		
		print "asserting that first c is equal to c_ref", norm(c_ref - c_new) <= 0.001
		
		w_ref = asarray(w_t_proj(1.)).flatten()
		c_ref = asarray(c_t(1.)).flatten()
		
		print "last c ", c_ref
		"solving for closest c with w_ref"
		res, c_new = qp_ineq_3D_line(c_ref, w_ref)
		print "asserting that last c is equal to c_ref", norm(c_ref - c_new) <= 0.001
		
		#reconstructing c(t)
		
		def _gen_approx(f, n, constraints):		
			nf = float(n)
			waypoints = matrix([f(float(i) / nf) for i in range(n+1)]).transpose()
			if constraints == None:
				return bezier(waypoints)
			else:
				return bezier(waypoints, constraints)
		
		def reconstruct_c_at(w_t, c_t):
			def closure(t):
				w_ref = asarray(w_t(t)).flatten()
				c_ref = asarray(c_t(t)).flatten()
				res, c_new = qp_ineq_3D_line(c_ref, w_ref)
				if not res:
					print "qp failed"
				#~ print "res qp at ", t, " ", c_new, " norm: ", norm(c_ref - c_new) 
				return c_new
			return closure
		
		def reconstruct_ddc_at(w_t, m = 54., g_vec=array([0.,0.,-9.81])):
			def closure(t):
				return asarray(w_t(t)).flatten()[0:3] / m + g_vec
			return closure
				
		def _gen_bezier(w_t_proj, c_t, n, constraints = None):
			f = reconstruct_c_at(w_t_proj, c_t)
			return _gen_approx(f, n+ 1, constraints)
			
		def _ddc_t_from_wt(w_t_proj, n):
			f = reconstruct_ddc_at(w_t_proj)
			return _gen_approx(f, n+ 1, constraints=None)
			
		def _c_t_from_ddc(w_t_proj, c_t, n, constraints = None):
			ddc_b = _ddc_t_from_wt(w_t_proj, n)
			return ddc_b.compute_primitive(2)
			
		
		print "reconstructing c(t) with 1, 3, 5, 7  waypoint "
		res_1 = _gen_bezier(w_t_proj, c_t, 1)
		res_3 = _gen_bezier(w_t_proj, c_t, 3)
		res_5 = _gen_bezier(w_t_proj, c_t, 5)
		res_7 = _gen_bezier(w_t_proj, c_t, 7)
		
		print "reconstructing c(t) with 1, 3, 5, 7  waypoint and constraints "
		c = curve_constraints();
		res_1_c = _c_t_from_ddc(w_t_proj, c_t, 1, c)
		res_3_c = _c_t_from_ddc(w_t_proj, c_t, 3, c)
		res_5_c = _c_t_from_ddc(w_t_proj, c_t, 5, c)
		res_7_c = _c_t_from_ddc(w_t_proj, c_t, 7, c)
		#~ res_1_c = _gen_bezier(w_t_proj, c_t, 1, c)
		#~ res_3_c = _gen_bezier(w_t_proj, c_t, 3, c)
		#~ res_5_c = _gen_bezier(w_t_proj, c_t, 5, c)
		#~ res_7_c = _gen_bezier(w_t_proj, c_t, 7, c)
		
		print "now checking if the trajectories are okay"
		def check(curve):
			wt = get_w_of_t(curve, m = 54., g_vec=array([0.,0.,-9.81]))		
			nb_succ = 100
			for i in range(100):
				if not (H.dot(wt(i * 0.01))<=0.01).all():
					#~ print "stability check failed at ", i, H.dot(wt(i * 0.01)).max()
					nb_succ -= 1 
			#~ print "stability check success"
			return nb_succ
		
		success = [check(x) for x in [c_t, res_1, res_3, res_5, res_7, res_1_c, res_3_c, res_5_c, res_7_c]]
		for i, val in enumerate(success):
			print "res for curve ", i , " : ", val
		
		import matplotlib.cm as cm
		colors = cm.rainbow(np.linspace(0, 1, 10))
		
		#plot c_t	
		fig = plt.figure()
		ax = fig.add_subplot(111, projection='3d')
		n = 100
		
		points = [eval_as_array(c_t, 0.01 * i) for i in range(100)]
		xs = [point[0] for point in points]
		ys = [point[1] for point in points]
		zs = [point[2] for point in points]
		ax.scatter(xs, ys, zs, c='r')
		
		points = [eval_as_array(res_1, 0.01 * i) for i in range(100)]
		xs = [point[0] for point in points]
		ys = [point[1] for point in points]
		zs = [point[2] for point in points]
		#~ ax.scatter(xs, ys, zs, c=colors[1])
		
		#plot ddc_t	
		#~ points = [eval_as_array(res_3, 0.01 * i) for i in range(100)]
		#~ xs = [point[0] for point in points]
		#~ ys = [point[1] for point in points]
		#~ zs = [point[2] for point in points]
		#~ ax.scatter(xs, ys, zs, c=colors[2])
		#~ 
		#~ 
		#plot c_of_w_t	
		#~ points = [eval_as_array(res_5, 0.01 * i) for i in range(100)]
		#~ xs = [point[0] for point in points]
		#~ ys = [point[1] for point in points]
		#~ zs = [point[2] for point in points]
		#~ ax.scatter(xs, ys, zs, c=colors[3])
		
		#~ #plot c_of_w_t	
		points = [eval_as_array(res_7, 0.01 * i) for i in range(100)]
		xs = [point[0] for point in points]
		ys = [point[1] for point in points]
		zs = [point[2] for point in points]
		ax.scatter(xs, ys, zs, c='g')
		
		points = [eval_as_array(res_1_c, 0.01 * i) for i in range(100)]
		xs = [point[0] for point in points]
		ys = [point[1] for point in points]
		zs = [point[2] for point in points]
		#~ ax.scatter(xs, ys, zs, c=colors[5])
		
		#plot ddc_t	
		#~ points = [eval_as_array(res_3, 0.01 * i) for i in range(100)]
		#~ xs = [point[0] for point in points]
		#~ ys = [point[1] for point in points]
		#~ zs = [point[2] for point in points]
		#~ ax.scatter(xs, ys, zs, c=colors[6])
		#~ 
		#~ 
		#plot c_of_w_t	
		#~ points = [eval_as_array(res_5, 0.01 * i) for i in range(100)]
		#~ xs = [point[0] for point in points]
		#~ ys = [point[1] for point in points]
		#~ zs = [point[2] for point in points]
		#~ ax.scatter(xs, ys, zs, c=colors[7])
		
		#~ #plot c_of_w_t	
		points = [eval_as_array(res_7_c, 0.01 * i) for i in range(100)]
		xs = [point[0] for point in points]
		ys = [point[1] for point in points]
		zs = [point[2] for point in points]
		ax.scatter(xs, ys, zs, c='b')
		
		return res_5_c
Example #4
0
    def test_all(self):
        waypoints = matrix([[1., 2., 3.], [4., 5., 6.]]).transpose()
        waypoints6 = matrix([[1., 2., 3., 7., 5., 5.],
                             [4., 5., 6., 4., 5., 6.]]).transpose()
        time_waypoints = matrix([0., 1.])

        # testing bezier curve
        a = bezier6(waypoints6)
        a = bezier(waypoints, -1., 3.)

        self.assertEqual(a.degree, a.nbWaypoints - 1)
        a.min()
        a.max()
        a(0.4)
        self.assertTrue((a.derivate(0.4, 0) == a(0.4)).all())
        a.derivate(0.4, 2)
        a = a.compute_derivate(100)

        prim = a.compute_primitive(1)

        for i in range(10):
            t = float(i) / 10.
            self.assertTrue((a(t) == prim.derivate(t, 1)).all())
        self.assertTrue((prim(0) == matrix([0., 0., 0.])).all())

        prim = a.compute_primitive(2)
        for i in range(10):
            t = float(i) / 10.
            self.assertTrue((a(t) == prim.derivate(t, 2)).all())
        self.assertTrue((prim(0) == matrix([0., 0., 0.])).all())

        # testing bezier with constraints
        c = curve_constraints()
        c.init_vel = matrix([0., 1., 1.])
        c.end_vel = matrix([0., 1., 1.])
        c.init_acc = matrix([0., 1., -1.])
        c.end_acc = matrix([0., 100., 1.])

        a = bezier(waypoints, c)
        self.assertLess(norm(a.derivate(0, 1) - c.init_vel), 1e-10)
        self.assertLess(norm(a.derivate(1, 2) - c.end_acc), 1e-10)

        # testing polynom function
        a = polynom(waypoints)
        a = polynom(waypoints, -1., 3.)
        a.min()
        a.max()
        a(0.4)
        self.assertTrue(((a.derivate(0.4, 0) == a(0.4)).all()))
        a.derivate(0.4, 2)

        # testing exact_cubic function
        a = exact_cubic(waypoints, time_waypoints)
        a.min()
        a.max()
        a(0.4)
        self.assertTrue(((a.derivate(0.4, 0) == a(0.4)).all()))
        a.derivate(0.4, 2)

        # testing spline_deriv_constraints
        c = curve_constraints()
        c.init_vel
        c.end_vel
        c.init_acc
        c.end_acc

        c.init_vel = matrix([0., 1., 1.])
        c.end_vel = matrix([0., 1., 1.])
        c.init_acc = matrix([0., 1., 1.])
        c.end_acc = matrix([0., 1., 1.])

        a = spline_deriv_constraint(waypoints, time_waypoints)
        a = spline_deriv_constraint(waypoints, time_waypoints, c)