def thetaEuler(nx, ntmax, theta, comm): '''theta == 0 means forward Euler method, theta == 1 means backward Euler method. 0 <= theta <= 1. ''' dx = 1.0/nx dt = 0.5*dx**2 x = [] for i in range(nx + 1): x.append(i*dx) u = np.zeros(nx + 1) dimension = nx - 1 dimension, rowA, colA, dataA = spmvParallel.sparseMatrix(dimension, theta*dt/dx**2) dimension, rowB, colB, dataB = spmvParallel.sparseMatrix(dimension, -(1-theta)*dt/dx**2) f = np.zeros(len(x)) for i in range(len(x)): f[i] = F(x[i]) tol = 0.0001 iterMax = 100 step = 0 while(True): V = [] for element in u[1:-1]: V.append(element) u[1:-1] = spmvcgParallel.conjugateGradient(dimension, rowA, colA, dataA, spmvParallel.productParallel(dimension, rowB, colB, dataB, u[1:-1], comm) + dt*f[1:-1], tol, iterMax, comm) step = step + 1 residual = 0 for i in range(len(V)): residual = residual + (V[i] - u[1:-1][i])**2 #print step #print residual if (step > ntmax): break if (np.sqrt(residual) < 0.0000001): break return x, u
def main(): import sys if len(sys.argv) != 3: print "Matrix dimension = argv[1], l = argv[2]. " return -1 pr = cProfile.Profile() pr.enable() comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() dimension = int(sys.argv[1]) l = float(sys.argv[2]) dimension, row, col, data = spmvParallel.sparseMatrix(dimension, l) b = np.zeros(dimension) for i in range(dimension): b[i] = i + 1 tol = 0.0001 iterMax = 100 x = conjugateGradient(dimension, row, col, data, b, tol, iterMax, comm) if False and rank == 0: A = spmvParallel.createSparseMatrix(dimension, l) print "Matrix A: " print A print "Vector b: " print b print "Solution of Ax = b: " print x print "Ax = " print spmvParallel.productParallel(dimension, row, col, data, x, comm) pr.disable() pr.dump_stats("profile") pr.print_stats() return 0
def main(): import sys if (len(sys.argv) != 3): print "Matrix dimension = argv[1], l = argv[2]. " return -1 pr = cProfile.Profile() pr.enable() comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() dimension = int(sys.argv[1]) l = float(sys.argv[2]) dimension, row, col, data = spmvParallel.sparseMatrix(dimension, l) b = np.zeros(dimension) for i in range(dimension): b[i] = i + 1 tol = 0.0001 iterMax = 100 x = conjugateGradient(dimension, row, col, data, b, tol, iterMax, comm) if (False and rank == 0): A = spmvParallel.createSparseMatrix(dimension, l) print "Matrix A: " print A print "Vector b: " print b print "Solution of Ax = b: " print x print "Ax = " print spmvParallel.productParallel(dimension, row, col, data, x, comm) pr.disable() pr.dump_stats("profile") pr.print_stats() return 0
def thetaEuler(nx, ntmax, theta, comm): '''theta == 0 means forward Euler method, theta == 1 means backward Euler method. 0 <= theta <= 1. ''' dx = 1.0 / nx dt = 0.5 * dx**2 x = [] for i in range(nx + 1): x.append(i * dx) u = np.zeros(nx + 1) dimension = nx - 1 dimension, rowA, colA, dataA = spmvParallel.sparseMatrix( dimension, theta * dt / dx**2) dimension, rowB, colB, dataB = spmvParallel.sparseMatrix( dimension, -(1 - theta) * dt / dx**2) f = np.zeros(len(x)) for i in range(len(x)): f[i] = F(x[i]) tol = 0.0001 iterMax = 100 step = 0 while (True): V = [] for element in u[1:-1]: V.append(element) u[1:-1] = spmvcgParallel.conjugateGradient( dimension, rowA, colA, dataA, spmvParallel.productParallel(dimension, rowB, colB, dataB, u[1:-1], comm) + dt * f[1:-1], tol, iterMax, comm) step = step + 1 residual = 0 for i in range(len(V)): residual = residual + (V[i] - u[1:-1][i])**2 #print step #print residual if (step > ntmax): break if (np.sqrt(residual) < 0.0000001): break return x, u