def test_sampling():
    spn = example_spns.get_gender_spn()
    '''
    Always same random number generator
    '''

    samples = fn.sampling(spn, n_samples=10, random_seed=1)
    print(samples)

    samples = fn.sampling_rang(spn,
                               rang=[None, None, None, None],
                               n_samples=10,
                               random_seed=1)
    print(samples)

    samples = fn.sampling_rang(
        spn,
        rang=[None, None, NumericRange([[10, 11], [29, 30]])],
        n_samples=10,
        random_seed=1)
    print(samples)

    samples = fn.sampling_rang(
        spn,
        rang=[NominalRange([0]), None,
              NumericRange([[14, 15], [29, 30]])],
        n_samples=10,
        random_seed=1)
    print(samples)
    def test_sample_range(self):

        val = 20
        scope = [0]
        node = create_static_leaf(val, scope)

        samples = SamplingRange.sample_static_node(node, 10)
        self.assertAlmostEqual(np.average(samples), 20)

        rang = NumericRange([[20, 20.321]])
        ranges = np.array([rang])
        samples = SamplingRange.sample_static_node(node, 10, ranges=ranges)
        self.assertAlmostEqual(np.average(samples), 20)

        rang = NumericRange([[19, 20]])
        ranges = np.array([rang])
        samples = SamplingRange.sample_static_node(node, 10, ranges=ranges)
        self.assertAlmostEqual(np.average(samples), 20)

        rang = NumericRange([[19, 19.5], [19.999, 20.111], [20.5, 21]])
        ranges = np.array([rang])
        samples = SamplingRange.sample_static_node(node, 10, ranges=ranges)
        self.assertAlmostEqual(np.average(samples), 20)

        rang = NumericRange([[19, 19.5]])
        ranges = np.array([rang])
        samples = SamplingRange.sample_static_node(node, 10, ranges=ranges)
        self.assertTrue(all(np.isnan(samples)))
    def test_sample_range(self):

        np.random.seed(10)
        data = np.random.normal(20, scale=5, size=1000).reshape((1000, 1))
        numpy_data = np.array(data, np.float64)
        meta_types = [MetaType.REAL]
        domains = [[np.min(numpy_data[:, 0]), np.max(numpy_data[:, 0])]]
        ds_context = Context(meta_types=meta_types, domains=domains)
        rand_gen = np.random.RandomState(100)
        pwl = create_piecewise_leaf(data,
                                    ds_context,
                                    scope=[0],
                                    prior_weight=None)

        rang = [NumericRange([[20]])]
        ranges = np.array(rang)
        samples = SamplingRange.sample_piecewise_node(pwl, 10, rand_gen,
                                                      ranges)
        self.assertEqual(len(samples), 10)
        self.assertAlmostEqual(np.average(samples), 20)

        rang = [NumericRange([[20, 100]])]
        ranges = np.array(rang)
        samples = SamplingRange.sample_piecewise_node(pwl, 10, rand_gen,
                                                      ranges)
        self.assertTrue(all(samples[samples > 20]))
        self.assertTrue(all(samples[samples < 100]))

        rang = [NumericRange([[10, 13], [20, 100]])]
        ranges = np.array(rang)
        samples = SamplingRange.sample_piecewise_node(pwl, 10, rand_gen,
                                                      ranges)
        self.assertFalse(
            any(samples[np.where((samples > 13) & (samples < 20))]))
        self.assertFalse(any(samples[samples < 10]))
def test_marg():
    spn = example_spns.get_gender_spn()

    spn1 = fn.marg(spn, [2])
    fn.plot_spn(spn1, "marg1.pdf")

    spn2 = fn.marg(spn, [0])
    fn.plot_spn(spn2, "marg2.pdf")

    spn3 = fn.marg(spn, [1])
    fn.plot_spn(spn3, "marg3.pdf")

    spn4 = fn.marg(spn, [1, 2])
    fn.plot_spn(spn4, "marg4.pdf")

    rang = [None, NominalRange([1]), None]
    prob, spn5 = fn.marg_rang(spn, rang)
    fn.plot_spn(spn5, "marg5.pdf")

    rang = [None, NominalRange([1]), NumericRange([[10, 12]])]
    prob, spn6 = fn.marg_rang(spn, rang)
    fn.plot_spn(spn6, "marg6.pdf")

    rang = [NominalRange([0]), NominalRange([1]), None]
    prob = fn.prob(spn, rang)
    print(prob)
    prob = fn.prob(spn6, rang)
    print(prob)
Example #5
0
def visualize_density(spn,
                      value_dict,
                      rang=None,
                      n_steps=50,
                      max_density=None,
                      save_path=None):

    #Only select numeric features
    selected_features = []
    for feature_id in spn.scope:
        if value_dict[feature_id][0] == "numeric":
            selected_features.append(feature_id)

    #Create ranges
    if rang is None:
        rang = np.array([None] * (max(spn.scope) + 1))

    ranges = []
    for i, feature_id in enumerate(selected_features):
        for x_val in np.linspace(value_dict[feature_id][2][0],
                                 value_dict[feature_id][2][1],
                                 num=n_steps):
            n_rang = rang.copy()
            n_rang[feature_id] = NumericRange([[x_val]])
            ranges.append(n_rang)

    #Evaluate densities
    res = fn.probs(spn, np.array(ranges))

    #Visualize
    ncols = 1
    nrows = len(selected_features)
    figsize_x = 16
    figsize_y = 6 * len(selected_features)
    _, axes = plt.subplots(nrows,
                           ncols,
                           figsize=(figsize_x, figsize_y),
                           squeeze=False,
                           sharey=True,
                           sharex=False)

    for i, feature_id in enumerate(selected_features):
        plot = axes[i][0]

        x_vals = np.linspace(value_dict[feature_id][2][0],
                             value_dict[feature_id][2][1],
                             num=n_steps)
        y_vals = res[n_steps * i:n_steps * i + n_steps]
        plot.plot(x_vals, y_vals)

        if max_density is not None:
            plot.set_ylim(0, max_density)
        plot.set_title(value_dict[feature_id][1])

    plt.tight_layout()
    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
    def test_inference_range(self):

        np.random.seed(10)
        data = np.random.normal(20, scale=5, size=1000).reshape((1000, 1))
        numpy_data = np.array(data, np.float64)
        meta_types = [MetaType.REAL]
        domains = [[np.min(numpy_data[:, 0]), np.max(numpy_data[:, 0])]]
        ds_context = Context(meta_types=meta_types, domains=domains)
        pwl = create_piecewise_leaf(data,
                                    ds_context,
                                    scope=[0],
                                    prior_weight=None)

        rang = [NumericRange([[20]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 0.086475210674)

        rang = [NumericRange([[21]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 0.0855907611968)

        rang = [NumericRange([[19]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 0.0833451329643)

        rang = [NumericRange([[-20]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 0)

        rang = [NumericRange([[20, 100]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 0.493416517396)

        rang = [NumericRange([[-20, 20]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 0.506583482604)

        rang = [NumericRange([[-20, 100]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 1)

        rang = [NumericRange([[-20, -10]])]
        ranges = np.array([rang])
        prob = InferenceRange.piecewise_likelihood_range(pwl, ranges)[0][0]
        self.assertAlmostEqual(prob, 0)
def test_prob():
    spn = example_spns.get_gender_spn()

    rang = [None, None, None]
    prob = fn.prob(spn, rang)
    print(prob)

    rang = [NominalRange([0]), NominalRange([1]), NumericRange([[20]])]
    prob = fn.prob(spn, rang)
    print(prob)

    ranges = np.array([[None, None, NumericRange([[0, 20]])],
                       [NominalRange([0]), None, None],
                       [None, NominalRange([1]), None]])
    probs = fn.probs(spn, ranges)
    print(probs)

    inst = [0, np.nan, np.nan]
    prob = fn.prob_spflow(spn, inst)
    print(prob)

    data = np.array([[0, np.nan, np.nan], [0, 1, np.nan]])
    probs = fn.probs_spflow(spn, data)
    print(probs)
def _generate_conds(target_id, value_dict, numeric_intervals=10):
    conds = []
    labels = []
    if value_dict[target_id][0] == "discrete":
        for val in sorted(value_dict[target_id][2]):
            conds.append(NominalRange([val]))
            labels.append(value_dict[target_id][2][val])
    elif value_dict[target_id][0] == "numeric":
        val_space = np.linspace(value_dict[target_id][2][0],
                                value_dict[target_id][2][1],
                                numeric_intervals + 1)
        for interval in zip(val_space[1:], val_space[:-1]):
            conds.append(NumericRange([list(interval)]))
            labels.append(str(list(interval)))
    else:
        raise Exception(
            "Not implemented for other than discrete or numeric ...: " +
            str(value_dict[target_id][0]))
    return conds, labels
Example #9
0
def test_sample2():
    #Create distribution
    y_range = [0., 10, 100, 30, 10, 200, 0.]
    x_range = [0.,  2,  4.,  6,  8,  10, 12]
    x_range, y_range = np.array(x_range), np.array(y_range)
    auc = np.trapz(y_range, x_range)
    y_range = y_range / auc
    
    
    
    rand_gen = np.random.RandomState(10)
    
    
    ranges = [NumericRange([[0., 4.], [9., 12.]])]
    
    t0 = time.time()
    cumulative_stats, samples = sample(x_range, y_range, ranges, 100000, rand_gen)
    exc_time = time.time()-t0
    
    print("cum_sampling: " + str(exc_time))

    
    #Plot distribution
    plt.title("Actual distribution")
    plt.plot(x_range, y_range)
    plt.show()
    
    plt.hist(samples, bins=50)
    plt.show()
    
    #Plot inverse cumulative distribution
    x_domain = np.linspace(0, 1, 100)
    y_domain = np.zeros(len(x_domain))
    for i, x_val in enumerate(x_domain):
        y_domain[i] = inverse_cumulative(cumulative_stats, x_val)

    plt.title("Inverse cumulative distribution")
    plt.plot(x_domain, y_domain)
    plt.show()
Example #10
0
def classify_dataset(spn,
                     target_id,
                     df,
                     transform=False,
                     value_dict=None,
                     epsilon=0.01):
    if value_dict is None: value_dict = generate_adhoc_value_dict(spn)
    sorted_scope = sorted(spn.scope)

    if transform:
        inv_val_dict = {
            v[1]: {v2: k2
                   for k2, v2 in v[2].items()}
            for _, v in value_dict.items() if v[0] == "discrete"
        }
        for col_name, map_dict in inv_val_dict.items():
            df[col_name] = df[col_name].map(map_dict)

    values = np.array(df.values)
    ranges = np.full(shape=(len(values), np.max(spn.scope) + 1),
                     fill_value=None)
    for i, col in enumerate(values.T):
        f_id = sorted_scope[i]
        if f_id == target_id: continue

        if value_dict[f_id][0] == "discrete":
            for j, v in enumerate(col):
                ranges[j, f_id] = NominalRange([v])
        elif value_dict[f_id][0] == "numeric":
            bound = epsilon * (value_dict[f_id][2][1] - value_dict[f_id][2][0])
            for j, v in enumerate(col):
                ranges[j, f_id] = NumericRange([[v - bound, v + bound]])
        else:
            raise Exception("Unknown attribute-type: " +
                            str(value_dict[f_id][0]))

    return classifies(spn, target_id, ranges, value_dict)
def visualize_Density(spn):

    from spn.experiments.AQP.Ranges import NominalRange, NumericRange
    from spn.algorithms import Inference
    from simple_spn.InferenceRange import categorical_likelihood_range, gaussian_likelihood_range
    from spn.structure.Base import Sum, Product
    from spn.algorithms.Inference import sum_likelihood, prod_likelihood
    from spn.structure.leaves.parametric.Parametric import Gaussian, Categorical
    from simple_spn.UpdateRange import categorical_update_range

    inference_support_ranges = {
        Gaussian: None,
        Categorical: categorical_likelihood_range,
        Sum: sum_likelihood,
        Product: prod_likelihood
    }

    distribution_update_ranges = {
        Gaussian: None,
        Categorical: categorical_update_range
    }

    import matplotlib.pyplot as plt
    _, axes = plt.subplots(1,
                           5,
                           figsize=(15, 10),
                           squeeze=False,
                           sharey=False,
                           sharex=True)

    space_start = 0.00
    space_end = 1.0
    steps = 100
    max_y = 5

    for i in range(5):
        x_vals = np.linspace(space_start, space_end, num=steps)
        ranges = []
        for x_val in x_vals:
            r = [None] * i + [NumericRange([[x_val]])] + [None] * (5 - i)
            ranges.append(r)

        ranges = np.array(ranges)

        inference_support_ranges = {
            Gaussian: gaussian_likelihood_range,
            Categorical: categorical_likelihood_range,
            Sum: sum_likelihood,
            Product: prod_likelihood
        }

        y_vals = Inference.likelihood(
            spn,
            data=ranges,
            dtype=np.float64,
            node_likelihood=inference_support_ranges)[:, 0]

        axes[0][i].plot(x_vals, y_vals)
        axes[0][i].set_title("Method " + str(i) + " All")
        axes[0][i].set_ylim([0, max_y])

    evidence = [None, None, None, None, None, NominalRange([0])]
    prob_no_alarm, spn_no_alarm = spn_for_evidence(
        spn,
        evidence,
        node_likelihood=inference_support_ranges,
        distribution_update_ranges=distribution_update_ranges)
    print(prob_no_alarm)

    for i in range(5):
        x_vals = np.linspace(space_start, space_end, num=steps)
        ranges = []
        for x_val in x_vals:
            r = [None] * i + [NumericRange([[x_val]])] + [None] * (5 - i)
            ranges.append(r)

        ranges = np.array(ranges)

        inference_support_ranges = {
            Gaussian: gaussian_likelihood_range,
            Categorical: categorical_likelihood_range,
            Sum: sum_likelihood,
            Product: prod_likelihood
        }

        y_vals = Inference.likelihood(
            spn_no_alarm,
            data=ranges,
            dtype=np.float64,
            node_likelihood=inference_support_ranges)[:, 0]

        axes[0][i].plot(x_vals, y_vals, label="No Alarm", linestyle=":")

    evidence = [None, None, None, None, None, NominalRange([1])]
    prob_alarm, spn_alarm = spn_for_evidence(
        spn,
        evidence,
        node_likelihood=inference_support_ranges,
        distribution_update_ranges=distribution_update_ranges)
    print(prob_alarm)

    for i in range(5):
        x_vals = np.linspace(space_start, space_end, num=steps)
        ranges = []
        for x_val in x_vals:
            r = [None] * i + [NumericRange([[x_val]])] + [None] * (5 - i)
            ranges.append(r)

        ranges = np.array(ranges)

        inference_support_ranges = {
            Gaussian: gaussian_likelihood_range,
            Categorical: categorical_likelihood_range,
            Sum: sum_likelihood,
            Product: prod_likelihood
        }

        y_vals = Inference.likelihood(
            spn_alarm,
            data=ranges,
            dtype=np.float64,
            node_likelihood=inference_support_ranges)[:, 0]

        axes[0][i].plot(x_vals, y_vals, label="Alarm")

    plt.legend()
    plt.tight_layout()

    plt.savefig("pdp.pdf")

    plt.show()

    spn_util.plot_spn(spn, "pval.pdf")

    tmp = get_nodes_with_weight(spn, 5)

    for (weight, node) in tmp:
        print(str(round(node.p[1], 2)) + "\t" + str(weight))
Example #12
0
def evaluate_numeric_density_leaf(leaf, x_vals):
    f_id = leaf.scope[0]
    ranges = np.array([f_id * [None] + [NumericRange([[x]])] for x in x_vals])
    return probs(leaf, ranges)
            prob_rang = prob_ranges[unique[i]]
            n_vals = counts[i]
            p_samples += list((prob_rang[1] - prob_rang[0]) * rand_gen.random_sample(size=n_vals) + prob_rang[0])
            
        return norm.ppf(p_samples, loc=node.mean, scale=node.stdev)

            


if __name__ == '__main__':
    
    g = Gaussian(mean=10, stdev=2, scope=[0])
    samples = sample_gaussian_node(g, 5, np.random.RandomState(1), ranges=None)
    print(samples)
    
    ranges = np.array([NumericRange([[0,10]])])
    samples = sample_gaussian_node(g, 100, np.random.RandomState(1), ranges=ranges)
    print(samples)












Example #14
0
 #Import inference
 from spn.algorithms import Inference
 from spn.algorithms.Inference import sum_likelihood, prod_likelihood
 
 
 inference_support_ranges = {PiecewiseLinear : piecewise_likelihood_range, 
                             Categorical     : categorical_likelihood_range,
                             IdentityNumeric : identity_likelihood_range,
                             Sum             : sum_likelihood,
                             Product         : prod_likelihood}
 
 #Use None instead of np.nan
 ranges = np.array([[None, None, None],                                                          #Without any conditions
                    [NominalRange([0]), None, None],                                             #Only male
                    [NominalRange([0]), NominalRange([1]), None],                                #Only male and student
                    [NominalRange([0]), NominalRange([1]), NumericRange([[21,100]])],            #Only male and student and older than 21
                    [NominalRange([0]), NominalRange([1]), NumericRange([[10,15], [25,100]])]]   #Only male and student and age between 10 and 17 or 21 and 100
 )                  
 probabilities = Inference.likelihood(root_node, ranges, dtype=np.float64, node_likelihood=inference_support_ranges)
 
 print("Probabilities:")
 print(probabilities)
 print()
 
 
 
 #Sampling for given ranges
 from spn.algorithms import SamplingRange
 from spn.structure.leaves.piecewise.SamplingRange import sample_piecewise_node
 from spn.structure.leaves.parametric.SamplingRange import sample_categorical_node
 from spn.experiments.AQP.leaves.identity.SamplingRange import sample_identity_node
def visualize_Density_2d(spn):

    from spn.experiments.AQP.Ranges import NominalRange, NumericRange
    from spn.algorithms import Inference
    from simple_spn.InferenceRange import categorical_likelihood_range, gaussian_likelihood_range
    from simple_spn.UpdateRange import categorical_update_range
    from spn.experiments.AQP.Ranges import NominalRange, NumericRange
    from spn.structure.Base import Sum, Product
    from spn.algorithms.Inference import sum_likelihood, prod_likelihood
    from spn.structure.leaves.parametric.Parametric import Gaussian, Categorical

    distribution_update_ranges = {
        Gaussian: None,
        Categorical: categorical_update_range
    }

    inference_support_ranges = {
        Gaussian: gaussian_likelihood_range,
        Categorical: categorical_likelihood_range,
        Sum: sum_likelihood,
        Product: prod_likelihood
    }

    import matplotlib.pyplot as plt
    _, axes = plt.subplots(1,
                           3,
                           figsize=(15, 10),
                           squeeze=False,
                           sharey=False,
                           sharex=True)
    x_vals = np.linspace(0, 1, num=50)
    y_vals = np.linspace(0, 1, num=50)
    X, Y = np.meshgrid(x_vals, y_vals)

    ranges = []
    vals = []
    for y_val in y_vals:
        print(y_val)
        ranges = []
        for x_val in x_vals:
            ranges.append([
                NumericRange([[x_val]]),
                NumericRange([[y_val]]), None, None, None, None
            ])

        ranges = np.array(ranges)
        densities = Inference.likelihood(
            spn,
            data=ranges,
            dtype=np.float64,
            node_likelihood=inference_support_ranges)[:, 0]

        for i, d in enumerate(densities):
            if d > 5:
                densities[i] = 5

        vals.append(densities)

    vals = np.array(vals)
    axes[0][0].contour(X, Y, vals)
    axes[0][0].set_xlabel("Method1")
    axes[0][0].set_ylabel("Method2")
    axes[0][0].set_title("Overall")

    evidence = [None, None, None, None, None, NominalRange([0])]
    prob_no_alarm, spn_no_alarm = spn_for_evidence(
        spn,
        evidence,
        node_likelihood=inference_support_ranges,
        distribution_update_ranges=distribution_update_ranges)
    print(prob_no_alarm)

    ranges = []
    vals = []
    for y_val in y_vals:
        print(y_val)
        ranges = []
        for x_val in x_vals:
            ranges.append([
                NumericRange([[x_val]]),
                NumericRange([[y_val]]), None, None, None, None
            ])

        ranges = np.array(ranges)
        densities = Inference.likelihood(
            spn_no_alarm,
            data=ranges,
            dtype=np.float64,
            node_likelihood=inference_support_ranges)[:, 0]

        for i, d in enumerate(densities):
            if d > 5:
                densities[i] = 5

        vals.append(densities)

    vals = np.array(vals)
    axes[0][1].contour(X, Y, vals)
    axes[0][1].set_xlabel("Method1")
    axes[0][1].set_ylabel("Method2")
    axes[0][1].set_title("Keine Epidemie")

    evidence = [None, None, None, None, None, NominalRange([1])]
    prob_alarm, spn_alarm = spn_for_evidence(
        spn,
        evidence,
        node_likelihood=inference_support_ranges,
        distribution_update_ranges=distribution_update_ranges)
    print(prob_alarm)

    ranges = []
    vals = []
    for y_val in y_vals:
        print(y_val)
        ranges = []
        for x_val in x_vals:
            ranges.append([
                NumericRange([[x_val]]),
                NumericRange([[y_val]]), None, None, None, None
            ])

        ranges = np.array(ranges)
        densities = Inference.likelihood(
            spn_alarm,
            data=ranges,
            dtype=np.float64,
            node_likelihood=inference_support_ranges)[:, 0]

        for i, d in enumerate(densities):
            if d > 5:
                densities[i] = 5

        vals.append(densities)

    vals = np.array(vals)
    axes[0][2].contour(X, Y, vals)
    axes[0][2].set_xlabel("Method1")
    axes[0][2].set_ylabel("Method2")
    axes[0][2].set_title("Epidemie")

    plt.savefig("cdp.pdf")

    plt.show()
Example #16
0
    def test_inference_range(self):

        val = 20
        scope = [0]
        node = create_static_leaf(val, scope)

        rang = [NumericRange([[20]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 1)

        rang = [NumericRange([[19.2]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 0)

        rang = [NumericRange([[20.0003]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 0)

        rang = [NumericRange([[0]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 0)

        rang = [NumericRange([[0, 10]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 0)

        rang = [NumericRange([[0, 200]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 1)

        rang = [NumericRange([[19.99999, 20.11]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 1)

        rang = [NumericRange([[19.99999, 20]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 1)

        rang = [NumericRange([[20, 20.321]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 1)

        rang = [NumericRange([[19, 19.5], [20.5, 21]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 0)

        rang = [NumericRange([[19, 19.5], [19.999, 20.111], [20.5, 21]])]
        ranges = np.array([rang])
        prob = InferenceRange.static_likelihood_range(node, ranges)[0][0]
        self.assertAlmostEqual(prob, 1)
Example #17
0
    
    x = [0.,  1.,  2.,  3., 4.]
    y = [0., 0., 0., 10., 0.]
    x, y = np.array(x), np.array(y)
    auc = np.trapz(y, x)
    y = y / auc
    node4 = PiecewiseLinear(x_range=x, y_range=y, bin_repr_points=x[1:-1], scope=[1])
    
    root_node = 0.49 * (node1 * node3) + 0.51 * (node2 * node4)
    
       
    #Set context
    #meta_types = [MetaType.DISCRETE, MetaType.REAL]
    #domains = [[0,1],[0.,4.]]
    #ds_context = Context(meta_types=meta_types, domains=domains)
    
    
    inference_support_ranges = {PiecewiseLinear : piecewise_likelihood_range, 
                                Categorical     : categorical_likelihood_range}
    
    node_sample = {Categorical : sample_categorical_node,
                   PiecewiseLinear : sample_piecewise_node}
    
    ranges = [NominalRange([0]),None]
    samples = SamplingRange.sample_instances(root_node, 2, 30, rand_gen, ranges=ranges, node_sample=node_sample, node_likelihood=inference_support_ranges)#, return_Zs, return_partition, dtype)
    print("Samples: " + str(samples))
    
    ranges = [NominalRange([0]),NumericRange([[3., 3.1], [3.5, 4.]])]
    samples = SamplingRange.sample_instances(root_node, 2, 30, rand_gen, ranges=ranges, node_sample=node_sample, node_likelihood=inference_support_ranges)#, return_Zs, return_partition, dtype)
    print("Samples: " + str(samples))
Example #18
0
    #plot spn
    fn.plot_spn(spn, "sample_spn.pdf", value_dict)

    #generate samples
    samples = fn.sampling(spn, n_samples=10, random_seed=1)
    print(samples)

    samples = fn.sampling_rang(spn,
                               rang=[None, None, None, None],
                               n_samples=10,
                               random_seed=1)
    print(samples)

    samples = fn.sampling_rang(
        spn,
        rang=[None, None, NumericRange([[10, 11], [29, 30]])],
        n_samples=10,
        random_seed=1)
    print(samples)

    samples = fn.sampling_rang(
        spn,
        rang=[NominalRange([0]), None,
              NumericRange([[14, 15], [29, 30]])],
        n_samples=10,
        random_seed=1)
    print(samples)

    #Test probabilities
    rang = [None, None, None]
    prob = fn.prob(spn, rang)