Example #1
0
    def solve(self):
        symmetry_solver = LatticeSymmetrySolver(self.state)
        symmetry_solver.solve()

        # for j in xrange(5):
        #     self.__gamma_shrod()
        #     self.__x_shrod()
        #     self.state.density_potential = self.__solve_puass()

        E_start = spsc_data.EnergyValue(0.001, "eV")
        E_end = spsc_data.EnergyValue(0.3, "eV")
        dE = spsc_data.EnergyValue(0.0001, "eV")

        meta_info = self.state.electron_states[1].static_potential.meta_info
        self.state.electron_states[1].static_potential.convert_to('eV')
        self.state.density_potential.convert_to('eV')
        static_potential_arr = self.state.electron_states[
            1].static_potential.value[
                meta_info['x_solution_start']:meta_info['x_solution_end']]
        density_potential_arr = self.state.density_potential.value[
            meta_info['x_solution_start']:meta_info['x_solution_end']]

        potential_arr = static_potential_arr + density_potential_arr
        potential = spsc_data.Potential(potential_arr, "eV")
        potential_offset = spsc_data.EnergyValue(np.amin(potential_arr), 'eV')
        potential = potential - spsc_data.Potential(
            potential_offset.value * np.ones(
                (len(potential), ), "float64"), potential_offset.units)
        potential.meta_info = meta_info

        mass = self.state.electron_states[1].mass
        length = self.state.length
        iteration_factory = spsc_shrod.SolutionIterationRungeKuttFactory()
        solution_strategy = spsc_shrod.IterableSolutionStrategyNonSymmetricWell(
            E_start, E_end, dE, 1, iteration_factory)
        solutions = solution_strategy.solve(potential, mass, length,
                                            (10.0**-20, 0, 10.0**-25, 0))

        wave_function = solutions[0][1]
        zeros = np.zeros((len(self.state.density_potential), ))
        wave_function_full_arr = np.concatenate(
            (zeros[:meta_info['x_solution_start']], wave_function.value,
             zeros[meta_info['x_solution_end']:]))
        wave_function = spsc_data.WaveFunction(wave_function_full_arr)
        wave_function.mirror()
        wave_function.normalize()
        self.state.electron_states[1].wave_functions.append(wave_function)

        energy_level = solutions[0][0]
        energy_level = energy_level + potential_offset
        self.state.electron_states[1].energy_levels.append(energy_level)
Example #2
0
 def solve(self):
     E_start = spsc_data.EnergyValue(0.0001, "eV")
     E_end = spsc_data.EnergyValue(0.2, "eV")
     dE = spsc_data.EnergyValue(0.0001, "eV")
     static_potential = self.state.electron_states[0].static_potential
     meta_info = static_potential.meta_info
     iteration_factory = spsc_shrod.SolutionIterationSlopedLatticeFactory()
     solution_strategy = spsc_shrod.IterableSolutionStrategyNonSymmetricWell(
         E_start, E_end, dE, 1, iteration_factory)
     density_potential = self.state.density_potential
     mass = self.state.electron_states[0].mass
     length = self.state.length
     electron_state = self.state.electron_states[0]
     for j in xrange(10):
         potential = static_potential + density_potential
         potential_offset = spsc_data.EnergyValue(
             potential[meta_info["well_start"]], potential.units)
         potential = potential - spsc_data.Potential(
             potential_offset.value * np.ones(
                 (len(potential), ), "float64"), potential_offset.units)
         potential.meta_info = meta_info
         solutions = solution_strategy.solve(potential, mass, length,
                                             (10.0**-20, 0, 10.0**-25, 0))
         for i in xrange(len(solutions)):
             solution = solutions[i]
             if len(electron_state.wave_functions) > i:
                 electron_state.wave_functions[i] = solution[1]
             else:
                 electron_state.wave_functions.append(solution[1])
             energy_level = solution[0] + potential_offset
             if len(electron_state.energy_levels) > i:
                 electron_state.energy_levels[i] = energy_level
             else:
                 electron_state.energy_levels.append(energy_level)
         h = 1.0 / (len(self.state.electron_states[0].wave_functions[0]) -
                    1)
         electron_density = spsc_data.Density(
             electron_state.sum_density.value * h *
             (electron_state.wave_functions[0].value**2),
             electron_state.sum_density.units)
         self.state.static_density.convert_to("m^-2")
         density = self.state.static_density - electron_density
         puass_solution_strategy = spsc_puass.GaussSolutionStrategy()
         prev_density_potential = density_potential
         density_potential = puass_solution_strategy.solve(
             density, 12, self.state.length)
         density_potential.convert_to(prev_density_potential.units)
         density_potential.value = (density_potential.value +
                                    prev_density_potential.value) / 2
     self.state.density_potential = density_potential
Example #3
0
    def solve(self):
        # 30 nm well
        E_start = spsc_data.EnergyValue(0.001, "eV")
        E_end = spsc_data.EnergyValue(0.4, "eV")
        # 13 nm well
        # E_start = spsc_data.EnergyValue(0.01, "eV")
        # E_end = spsc_data.EnergyValue(0.08, "eV")
        dE = spsc_data.EnergyValue(0.0001, "eV")
        static_potential = self.state.electron_states[0].static_potential
        meta_info = static_potential.meta_info
        mass = self.state.electron_states[0].mass
        if isinstance(mass, spsc_data.APhysValueArray):
            iteration_factory = spsc_shrod.SolutionIterationSymmetryLatticeDiffMassFactory(
            )
        else:
            iteration_factory = spsc_shrod.SolutionIterationSymmetryLatticeFactory(
            )
        solution_strategy = spsc_shrod.IterableSolutionStrategySymmetricWell(
            E_start, E_end, dE, 1, iteration_factory)
        density_potential = self.state.density_potential
        length = self.state.length
        electron_state = self.state.electron_states[0]
        for j in xrange(5):
            potential = static_potential + density_potential
            potential_offset = spsc_data.EnergyValue(
                potential[meta_info["well_start"]], potential.units)
            potential = potential - spsc_data.Potential(
                potential_offset.value * np.ones(
                    (len(potential), ), "float64"), potential_offset.units)
            potential.meta_info = meta_info
            solutions = solution_strategy.solve(potential, mass, length,
                                                (10.0**-20, 0))
            for i in xrange(len(solutions)):
                solution = solutions[i]
                if len(electron_state.wave_functions) > i:
                    electron_state.wave_functions[i] = solution[1]
                else:
                    electron_state.wave_functions.append(solution[1])
                energy_level = solution[0] + potential_offset
                if len(electron_state.energy_levels) > i:
                    electron_state.energy_levels[i] = energy_level
                else:
                    electron_state.energy_levels.append(energy_level)

            density_potential = self.__solve_puass()
            # density_potential = self.__solve_puass() + density_potential
            # density_potential.value = density_potential.value / 2
        self.state.density_potential = density_potential
Example #4
0
 def solve(self):
     E_start = spsc_data.EnergyValue(0.001, "eV")
     E_end = spsc_data.EnergyValue(0.4, "eV")
     dE = spsc_data.EnergyValue(0.0001, "eV")
     iteration_factory = spsc_shrod.SolutionIterationFlatPotentialFactory()
     solution_strategy = spsc_shrod.IterableSolutionStrategySymmetricWell(
         E_start, E_end, dE, 6, iteration_factory)
     potential = self.state.electron_states[0].static_potential
     mass = self.state.electron_states[0].mass
     length = self.state.length
     solutions = solution_strategy.solve(potential, mass, length,
                                         (10.0**-20, 0))
     for i in xrange(len(solutions)):
         solution = solutions[i]
         self.state.electron_states[0].wave_functions.append(solution[1])
         self.state.electron_states[0].energy_levels.append(solution[0])
Example #5
0
    def __get_E_Fermi(self):
        electron_state = self.state.electron_states[0]
        dos = self.__get_dos()
        # @TODO currently it's working for two and one subband systems only
        energy_levels_number = len(electron_state.energy_levels)
        if energy_levels_number > 2:
            raise StandardError(
                "Cannot find E Fermi for more than 2 energy levels filled")
        for i in xrange(energy_levels_number):
            electron_state.energy_levels[i].convert_to(
                electron_state.energy_levels[i].units_default)

        electron_state.sum_density.convert_to(
            electron_state.sum_density.units_default)
        n = electron_state.sum_density.value
        if energy_levels_number == 1:
            E_Fermi_value = n / dos + electron_state.energy_levels[0].value
        else:
            E1 = electron_state.energy_levels[0].value
            E2 = electron_state.energy_levels[1].value
            E_Fermi_value = 0.5 * (n / dos + E1 + E2)
            if E_Fermi_value < E2:
                E_Fermi_value = n / dos + electron_state.energy_levels[0].value

        E_Fermi = spsc_data.EnergyValue(E_Fermi_value)
        # E_Fermi.convert_to("eV")
        return E_Fermi
Example #6
0
def superlattice_well_sloped(periods_num, well_length, lattice_well_length,
                             lattice_barrier_length, slope):
    state = superlattice_well(periods_num, well_length, lattice_well_length,
                              lattice_barrier_length)
    slope.convert_to(slope.units_default)
    state.length.convert_to(state.length.units_default)
    energy_diff = slope.value * state.length.value * constants.e
    energy_diff = spsc_data.EnergyValue(energy_diff)
    energy_diff.convert_to("eV")

    state.electron_states[0].static_potential.convert_to("eV")
    potential_arr = state.electron_states[0].static_potential.value
    slope_arr = np.zeros((len(potential_arr), ))
    dE = energy_diff.value / (len(slope_arr) - 1)
    for i in range(len(slope_arr)):
        slope_arr[i] = dE * i
    potential_arr = potential_arr + slope_arr
    well_min_index = potential_arr.argmin()
    well_min_value = potential_arr[well_min_index]
    potential_arr = potential_arr - np.full(
        (len(potential_arr), ), well_min_value)
    meta_info = state.electron_states[0].static_potential.meta_info
    state.electron_states[0].static_potential = spsc_data.Potential(
        potential_arr, "eV")
    state.electron_states[0].static_potential.meta_info = meta_info
    return state
Example #7
0
 def _get_U(self, index):
     self._reset_to_default_units()
     potential_value = self.potential[index]
     x = self.length.value * index / (len(self.potential) - 1)
     U = spsc_data.EnergyValue(potential_value -
                               self.slope.value * x * constants.e)
     return U
Example #8
0
    def __get_E_Fermi(self):
        electron_state_gamma = self.state.electron_states[0]
        electron_state_x = self.state.electron_states[1]
        dos_gamma = self.__get_dos_gamma()
        dos_x = self.__get_dos_x()
        # @TODO currently it's working for two and one subband systems only
        energy_levels_number = len(electron_state_gamma.energy_levels)
        if energy_levels_number > 2:
            raise StandardError(
                "Cannot find E Fermi for more than 2 energy levels filled")
        for i in xrange(energy_levels_number):
            electron_state_gamma.energy_levels[i].convert_to(
                electron_state_gamma.energy_levels[i].units_default)
        electron_state_x.energy_levels[0].convert_to(
            electron_state_x.energy_levels[0].units_default)

        electron_state_gamma.sum_density.convert_to(
            electron_state_gamma.sum_density.units_default)
        n = electron_state_gamma.sum_density.value
        Ex = electron_state_x.energy_levels[0].value
        E1 = electron_state_gamma.energy_levels[0].value
        if energy_levels_number == 1:
            E_Fermi_value = (n + dos_gamma * E1 + dos_x * Ex) / (dos_gamma +
                                                                 dos_x)
            E_max = max(Ex, E1)
            if E_Fermi_value < E_max:
                if E_max == Ex:
                    dos = dos_gamma
                else:
                    dos = dos_x
                E_Fermi_value = n / dos + min(Ex, E1)
        else:
            E2 = electron_state_gamma.energy_levels[1].value
            E_Fermi_value = (n + dos_gamma *
                             (E1 + E2) + dos_x * Ex) / (2 * dos_gamma + dos_x)
            E_max = max(Ex, E1, E2)
            if E_Fermi_value < E_max:
                if E_max == Ex:
                    E_Fermi_value = (n + dos_gamma *
                                     (E1 + E2)) / (2 * dos_gamma)
                    if E_Fermi_value < E2:
                        E_Fermi_value = n / dos_gamma + E1
                else:
                    E_Fermi_value = (n + dos_gamma * E1 +
                                     dos_x * Ex) / (dos_gamma + dos_x)
                    E_max = max(Ex, E1)
                    if E_Fermi_value < E_max:
                        if E_max == Ex:
                            dos = dos_gamma
                        else:
                            dos = dos_x
                        E_Fermi_value = n / dos + min(Ex, E1)
        E_Fermi = spsc_data.EnergyValue(E_Fermi_value)
        return E_Fermi
Example #9
0
    def __init__(self, potential, mass, length):
        super(SolutionIterationSlopePotential,
              self).__init__(potential, mass, length)
        self.slope = spsc_data.ElectricFieldValue(0)
        self.x0 = spsc_data.LengthValue(0)
        self.eps0 = spsc_data.EnergyValue(0)
        self._reset_to_default_units()
        # Calculate slope
        energy_difference = self.potential[SolutionIterationSlopePotential.SLOPE_RESOLUTION_DOTS_NUM - 1] - \
                            self.potential[0]
        energy_difference = spsc_data.EnergyValue(energy_difference)
        voltage_difference = energy_difference.value / constants.e
        length_piece = self.length.value * (
            SolutionIterationSlopePotential.SLOPE_RESOLUTION_DOTS_NUM -
            1) / (len(self.potential) - 1)
        self.slope.value = voltage_difference / length_piece

        self.x0.value = np.power(
            constants.h_plank**2 /
            (2 * self.mass.value * constants.e * self.slope.value),
            float(1) / 3)
        self.eps0.value = constants.e * self.slope.value * self.x0.value
Example #10
0
def single_well_sloped(well_length, slope):
    state = single_well(well_length)
    length = well_length * 3
    slope.convert_to(slope.units_default)
    length.convert_to(length.units_default)
    energy_diff = slope.value * length.value * constants.e
    energy_diff = spsc_data.EnergyValue(energy_diff)
    energy_diff.convert_to("eV")

    state.electron_states[0].static_potential.convert_to("eV")
    potential_arr = state.electron_states[0].static_potential.value
    slope_arr = np.zeros((len(potential_arr), ))
    dE = energy_diff.value / (len(slope_arr) - 1)
    for i in range(len(slope_arr)):
        slope_arr[i] = dE * i
    potential_arr = potential_arr + slope_arr
    well_min_index = potential_arr.argmin()
    well_min_value = potential_arr[well_min_index]
    potential_arr = potential_arr - np.full(
        (len(potential_arr), ), well_min_value)
    state.electron_states[0].static_potential = spsc_data.Potential(
        potential_arr, "eV")
    return state
Example #11
0
File: main.py Project: Feolius/spsc
plt.plot(wf_x)

electron_state_1.static_potential.convert_to('eV')
plt.plot(E1.value * np.ones((len(potential_1), ), "float64"))
plt.plot(E2.value * np.ones((len(potential_1), ), "float64"))
plt.plot(Ex.value * np.ones((len(potential_1), ), "float64"))

plt.show()

n = spsc_data.DensityValue(6.81 * 10**15, 'm^-2')
n.convert_to(n.units_default)
electron_state_1.mass.convert_to(electron_state_1.mass.units_default)
g = 0.068 * spsc_constants.m_e / (np.pi * spsc_constants.h_plank**2)
E1.convert_to(E1.units_default)
E2.convert_to(E2.units_default)
Ef = spsc_data.EnergyValue(0.5 * (n.value / g + E1.value + E2.value))
Ef1 = Ef - E1
Ef2 = Ef - E2
Ef.convert_to('eV')
E1.convert_to('eV')
E2.convert_to('eV')
Ef1.convert_to('eV')
Ef2.convert_to('eV')
print "E1: ", E1
print "E2: ", E2
print "dE: ", (E2 - E1)
print "Ef1: ", Ef1
print "Ef2: ", Ef2
print "Ex: ", Ex

# import start_scripts.RC1075