def test_returns_discretization_bins(self): start = 2.0 * pq.s stop = 5.0 * pq.s sampling_rate = 2.0 * pq.Hz expected = sp.array([2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]) * pq.s st = create_empty_spike_train(start, stop) _, bins = sigproc.st_convolve(st, sigproc.GaussianKernel(), sampling_rate=sampling_rate) assert_array_almost_equal(expected, bins)
def test_length_of_returned_array_equals_sampling_rate_times_duration( self): start = 2.0 * pq.s stop = 5.0 * pq.s duration = stop - start sampling_rate = 12 * pq.Hz expected_length = (sampling_rate * duration).simplified st = create_empty_spike_train(start, stop) result, _ = sigproc.st_convolve(st, sigproc.GaussianKernel(), sampling_rate=sampling_rate) self.assertEqual(expected_length, result.size)
def test_convolution_with_empty_spike_train_returns_array_of_zeros(self): st = create_empty_spike_train() result, _ = sigproc.st_convolve(st, sigproc.GaussianKernel(), 1 * pq.Hz) self.assertTrue(sp.all(result == 0.0))
def test_length_of_returned_array_equals_length_of_binned(self): binned = sp.ones(10) sampling_rate = 10 * pq.Hz result = sigproc.smooth(binned, sigproc.GaussianKernel(), sampling_rate) self.assertEqual(binned.size, result.size)
def test_convolution_with_empty_binned_array_returns_array_of_zeros(self): binned = sp.zeros(10) sampling_rate = 10 * pq.Hz result = sigproc.smooth(binned, sigproc.GaussianKernel(), sampling_rate) self.assertTrue(sp.all(result == 0.0))
def setUp(self): self.kernel_size = 500 * pq.ms self.kernel = sigproc.GaussianKernel(self.kernel_size)