Example #1
0
    def build_network(self, dynamics, cell_params):
        """
        Function to build the basic network - dynamics should be a PyNN
         synapse dynamics object
:param dynamics:
:return:
        """
        # SpiNNaker setup
        model = sim.IF_curr_exp
        sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0)

        # Create excitatory and inhibitory populations of neurons
        ex_pop = sim.Population(NUM_EXCITATORY, model, cell_params)
        in_pop = sim.Population(NUM_EXCITATORY / 4, model, cell_params)

        # Record excitatory spikes
        ex_pop.record()

        # Make excitatory->inhibitory projections
        sim.Projection(ex_pop,
                       in_pop,
                       sim.FixedProbabilityConnector(0.02, weights=0.03),
                       target='excitatory')
        sim.Projection(ex_pop,
                       ex_pop,
                       sim.FixedProbabilityConnector(0.02, weights=0.03),
                       target='excitatory')

        # Make inhibitory->inhibitory projections
        sim.Projection(in_pop,
                       in_pop,
                       sim.FixedProbabilityConnector(0.02, weights=-0.3),
                       target='inhibitory')

        # Make inhibitory->excitatory projections
        ie_projection = sim.Projection(in_pop,
                                       ex_pop,
                                       sim.FixedProbabilityConnector(
                                           0.02, weights=0),
                                       target='inhibitory',
                                       synapse_dynamics=dynamics)

        return ex_pop, ie_projection
 def test_generate_synapse_list_probability_zero_percent(self):
     number_of_neurons = 5
     first_population = pyNN.Population(number_of_neurons, pyNN.IF_curr_exp,
                                        cell_params_lif, label="One pop")
     weight = 2
     delay = 1
     synapse_type = 0
     connection = pyNN.FixedProbabilityConnector(0, weight, delay)
     synaptic_list = connection.generate_synapse_list(
         first_population, first_population, 1, 1.0, synapse_type)
     pp(synaptic_list.get_rows())
 def test_synapse_list_generation_for_different_sized_populations(self):
     number_of_neurons = 10
     first_population = pyNN.Population(number_of_neurons, pyNN.IF_curr_exp,
                                        cell_params_lif, label="One pop")
     second_population = pyNN.Population(number_of_neurons + 5,
                                         pyNN.IF_curr_exp, cell_params_lif,
                                         label="Second pop")
     weight = 2
     delay = 1
     connection = pyNN.FixedProbabilityConnector(0.1, weight, delay)
     synaptic_list = connection.generate_synapse_list(
         first_population, second_population, 1, 1.0, 0)
     pp(synaptic_list.get_rows())
 def test_generate_synapse_list_probability_100_percent(self):
     number_of_neurons = 5
     first_population = pyNN.Population(number_of_neurons, pyNN.IF_curr_exp,
                                        cell_params_lif, label="One pop")
     weight = 2
     delay = 1
     synapse_type = 0
     connection = pyNN.FixedProbabilityConnector(1, weight, delay)
     synaptic_list = connection.generate_synapse_list(
         first_population, first_population, 1, 1.0, synapse_type)
     pp(synaptic_list.get_rows())
     self.assertEqual(synaptic_list.get_max_weight(), weight)
     self.assertEqual(synaptic_list.get_min_weight(), weight)
     self.assertEqual(synaptic_list.get_n_rows(), number_of_neurons)
     self.assertEqual(synaptic_list.get_max_delay(), delay)
     self.assertEqual(synaptic_list.get_min_delay(), delay)
 def test_synapse_list_generation_for_negative_sized_populations(self):
     with self.assertRaises(ConfigurationException):
         weight = 2
         delay = 1
         pyNN.FixedProbabilityConnector(-0.5, weight, delay)
 def test_generate_synapse_list_probability_200_percent(self):
     with self.assertRaises(ConfigurationException):
         weight = 2
         delay = 1
         pyNN.FixedProbabilityConnector(2, weight, delay)
Example #7
0
# +-------------------------------------------------------------------+
# | Creation of connections                                           |
# +-------------------------------------------------------------------+
# Connection type between noise poisson generator and presynaptic populations
#sim.Projection(pre_stim, pre_pop, sim.FixedProbabilityConnector(0.1, weights=.5))
# Pre to Post (inlcuding defninition of STDP model)
stdp_model = sim.STDPMechanism(
    timing_dependence=sim.SpikePairRule(tau_plus=20.0, tau_minus=20.0),
    weight_dependence=sim.AdditiveWeightDependence(w_min=0,
                                                   w_max=1,
                                                   A_plus=0.2,
                                                   A_minus=0.2))
variableWeights = sim.Projection(
    pre_pop,
    post_pop,
    sim.FixedProbabilityConnector(0.1, weights=.5),
    synapse_dynamics=sim.SynapseDynamics(slow=stdp_model))

# Record spikes
pre_stim.record()
pre_pop.record()
post_pop.record()

# Run simulation
sim.run(sim_time)

# Dump data
#pre_pop.printSpikes("results/stdp_pre.spikes")
#post_pop.printSpikes("results/stdp_post.spikes")
#pre_pop.print_v("results/stdp_pre.v")
#post_pop.print_v("results/stdp_post.v")
Example #8
0
p.Projection(INoisePost, post_pop, ee_connector, target='excitatory')

# Additional Inputs projections
for i in range(len(IAddPre)):
    p.Projection(IAddPre[i], pre_pop, ee_connector, target='excitatory')
for i in range(len(IAddPost)):
    p.Projection(IAddPost[i], post_pop, ee_connector, target='excitatory')

# Plastic Connections between pre_pop and post_pop
stdp_model = p.STDPMechanism(
  timing_dependence = p.SpikePairRule(tau_plus = 20., tau_minus = 50.0, nearest=True),
  weight_dependence = p.AdditiveWeightDependence(w_min = 0, w_max = 0.9, A_plus=0.02, A_minus = 0.02)
)

plastic_projection = \
    p.Projection(pre_pop, post_pop, p.FixedProbabilityConnector(p_connect=0.5),
  synapse_dynamics = p.SynapseDynamics(slow= stdp_model)
)

# +-------------------------------------------------------------------+
# | Simulation and results                                            |
# +-------------------------------------------------------------------+

# Record neurons' potentials
pre_pop.record_v()
post_pop.record_v()

# Record spikes
pre_pop.record()
post_pop.record()
    def test_fixed_probabilityies(self):

        pop_size = 1024

        rng_weights = p.NumpyRNG(seed=369121518)

        min_weight = 0.1
        max_weight = 5.0
        weight_scale_ex_in = 0.25
        weight_dependence_n = \
            p.RandomDistribution(
                distribution='uniform',
                parameters=[1.0 + min_weight, 1.0 + max_weight],
                rng=rng_weights)
        weight_dependence_e = \
            p.RandomDistribution(distribution='uniform',
                                 parameters=[min_weight, max_weight],
                                 rng=rng_weights)
        weight_dependence_i = \
            p.RandomDistribution(distribution='uniform',
                                 parameters=[-(max_weight * weight_scale_ex_in),
                                             -min_weight],
                                 rng=rng_weights)

        runtime = 1000.0
        stim_start = 0.0
        stim_rate = 10
        pops_to_observe = ['mapped_pop_1']

        # Simulation Setup
        p.setup(timestep=1.0, min_delay=1.0, max_delay=11.0)

        # Neural Parameters
        tau_m = 24.0    # (ms)
        cm = 1
        v_rest = -65.0     # (mV)
        v_thresh = -45.0     # (mV)
        v_reset = -65.0     # (mV)
        t_refrac = 3.0       # (ms) (clamped at v_reset)
        tau_syn_exc = 3.0
        tau_syn_inh = tau_syn_exc * 3

        # cell_params will be passed to the constructor of the Population Object

        cell_params = {
            'tau_m': tau_m,
            'cm': cm,
            'v_init': v_reset,
            'v_rest': v_rest,
            'v_reset': v_reset,
            'v_thresh': v_thresh,
            'tau_syn_E': tau_syn_exc,
            'tau_syn_I': tau_syn_inh,
            'tau_refrac': t_refrac,
            'i_offset': 0
        }

        observed_pop_list = []
        inputs = p.Population(
            pop_size, p.SpikeSourcePoisson, {'duration': runtime,
                                             'start': stim_start,
                                             'rate': stim_rate},
            label="inputs")
        if 'inputs' in pops_to_observe:
            inputs.record()
            observed_pop_list.append(inputs)

        mapped_pop_1 = p.Population(pop_size, p.IF_curr_exp, cell_params,
                                    label="mapped_pop_1")
        if 'mapped_pop_1' in pops_to_observe:
            mapped_pop_1.record()
            observed_pop_list.append(mapped_pop_1)

        pop_inhibit = p.Population(pop_size, p.IF_curr_exp, cell_params,
                                   label="pop_inhibit")
        if 'pop_inhibit' in pops_to_observe:
            pop_inhibit.record()
            observed_pop_list.append(pop_inhibit)

        mapped_pop_2 = p.Population(pop_size, p.IF_curr_exp, cell_params,
                                    label="mapped_pop_2")

        if 'mapped_pop_2' in pops_to_observe:
            mapped_pop_2.record()
            observed_pop_list.append(mapped_pop_2)

        p.Projection(inputs, mapped_pop_1,
                     p.OneToOneConnector(
                         weights=weight_dependence_n, delays=1.0),
                     target='excitatory')

        p.Projection(mapped_pop_1, pop_inhibit,
                     p.OneToOneConnector(
                         weights=weight_dependence_e,
                         delays=1.0), target='excitatory')

        p.NativeRNG(123456)

        p.Projection(pop_inhibit, mapped_pop_2,
                     p.FixedProbabilityConnector(
                         p_connect=0.5, allow_self_connections=True,
                         weights=weight_dependence_i, delays=4.0),
                     target='inhibitory')

        p.Projection(mapped_pop_1, mapped_pop_2,
                     p.FixedProbabilityConnector(
                         p_connect=0.5, allow_self_connections=True,
                         weights=weight_dependence_e, delays=4.0),
                     target='excitatory')

        p.run(runtime)

        current_file_path = os.path.dirname(os.path.abspath(__file__))

        for pop in observed_pop_list:
            data = numpy.asarray(pop.getSpikes())
            current_pop_file_path = os.path.join(current_file_path,
                                                 "{}.data".format(pop.label))
            pre_recorded_data = p.utility_calls.read_spikes_from_file(
                current_pop_file_path, 0, pop_size, 0, runtime)
            for spike_element, read_element in zip(data, pre_recorded_data):
                    self.assertEqual(round(spike_element[0], 1),
                                     round(read_element[0], 1))
                    self.assertEqual(round(spike_element[1], 1),
                                     round(read_element[1], 1))