def store_walk_score(): """Store walk score data into database. Args: walk_score_list: A list contains area zipcode and the walk score. """ try: with open(r"..\data\walk score.csv","r") as csvfile: file=csvfile.readlines() except: print("error") else: info_list=[] for row in file: row=row.strip() row=row.split(",") info_list.append(row) sql.create_walk_score_table() for r in range(1,len(info_list)): walk_score=info_list[r][1] walk_score=float(walk_score) zip_code=info_list[r][0] zip_code=str(zip_code) zipcode_id=sql.get_zipcode_id(zip_code) sql.insert_walk_score(walk_score,zipcode_id)
def store_income(): """Store income data into database. """ sql.create_income_table() try: f = open(r"..\data\income.csv", "r") except IOError as err: print(f"File error: {err}.") else: file = csv.reader(f) keys = next(file) data = {} for key in keys: data[key] = [] for row in file: for i, entry in enumerate(row): data[keys[i]].append(entry) for r in range(0, len(data["income"])): income = data["income"][r] income = int(income) zip_code = data["zip code"][r] zip_code = str(zip_code) zipcode_id = sql.get_zipcode_id(zip_code) sql.insert_income(income, zipcode_id) f.close()
def store_community(): """Store the community data into database. """ try: with open(r"..\data\community.csv", "r") as csvfile: file = csvfile.readlines() except: print("error") else: info_list = [] for row in file: row = row.strip() row = row.split(",") info_list.append(row) sql.create_community_table() for r in range(1, len(info_list)): name = info_list[r][1] name = str(name) zip_code = info_list[r][0] zip_code = str(zip_code) zipcode_id = sql.get_zipcode_id(zip_code) sql.insert_community(zipcode_id, name)
def store_crime_rate(): """Read the downloaded crime rate data file. Store the data in dictionary. Raises: IOError: An error occurred accessing the crime rate.csv file. """ try: f = open(r"..\data\crime rate.csv", "r") except IOError as err: print(f"File error: {err}.") else: file = csv.reader(f) keys = next(file) data = {} for key in keys: data[key] = [] for row in file: for i, entry in enumerate(row): data[keys[i]].append(entry) f.close() sql.create_crime_rate_table() for r in range(0, len(data["crime rate"])): crime_rate = data["crime rate"][r] crime_rate = float(crime_rate) zip_code = data["zip code"][r] zip_code = str(zip_code) zipcode_id = sql.get_zipcode_id(zip_code) sql.insert_crime_rate(crime_rate, zipcode_id)
def store_house_value(): """Store hosing value data into database. Args: value_list: Return value from get_value() function.A list with area zipcode, hosing value and coordinates. """ try: with open(r"..\data\housing value.csv","r") as csvfile: file=csvfile.readlines() except: print("error") else: info_list=[] for row in file: row=row.strip() row=row.split(",") info_list.append(row) sql.create_housing_value_talble() for r in range(1,len(info_list)): value=info_list[r][0] if value!="-1": value=int(value) else: value=-1 latitude=info_list[r][2] latitude=float(latitude) longitude=info_list[r][3] longitude=float(longitude) zip_code=info_list[r][1] zip_code=str(zip_code) zipcode_id=sql.get_zipcode_id(zip_code) sql.insert_housing_value(value,latitude,longitude,zipcode_id)
def store_urban_data(): """Read urbanicity data from local csv file.Store the data into database. Raises: IOError: An error occurred accessing the crime rate.csv file. """ try: f = open(r"..\data\zip_urban_rural_ca.csv", "r") except IOError as err: print(f"File error: {err}.") else: file = csv.reader(f) keys = next(file) urban_dict = {} for key in keys: urban_dict[key] = [] for row in file: for i, entry in enumerate(row): urban_dict[keys[i]].append(entry) f.close() length = len(urban_dict['zip code']) sql.create_urban_table() for r in range(0, length): urban_units = urban_dict["housing units urban"][r] urban_units = str(urban_units) rural_units = urban_dict["housing units rural"][r] rural_units = str(rural_units) density = float(urban_dict["population density"][r]) zip_code = urban_dict["zip code"][r] zip_code = str(zip_code) zipcode_id = sql.get_zipcode_id(zip_code) sql.insert_urbanicity(urban_units, rural_units, density, zipcode_id)