Example #1
0
 def insert_data(self, dataframe):
     dataframe.to_sql('etl_hh',
                      schema='adhoc_parser',
                      con=engine,
                      if_exists='append',
                      index=False,
                      dtype={
                          'id': INT(),
                          'name': String(255),
                          'has_test': Boolean(),
                          'published_at': DateTime(),
                          'created_at': DateTime(),
                          'url': String(255),
                          'area_name': String(255),
                          'salary_from': INT(),
                          'salary_to': INT(),
                          'salary_currency': String(10),
                          'salary.gross': Boolean(),
                          'address.city': String(255),
                          'address.street': String(255),
                          'address_building': String(255),
                          'address_raw': String(500),
                          'metro_name': String(255),
                          'employer_id': INT(),
                          'employer_name': String(255),
                          'snippet_requirement': TEXT(),
                          'snippet_responsibility': TEXT(),
                          'contacts_name': String(255),
                          'contacts_email': String(255),
                      })
Example #2
0
    def _update_ts(self):
        cal_date = self._get_nearest_cal_date()
        if cal_date is None:
            return
        trade_date = cal_date.strftime('%Y%m%d')
        df = get_pro().daily_basic(ts_code='', trade_date=trade_date)

        dtype = {
            'ts_code': VARCHAR(length=10),
            'trade_date': DATE(),
            'close': FLOAT(),
            'y': INT(),
            'm': INT(),
            'turnover_rate': FLOAT(),
            'turnover_rate_f': FLOAT(),
            'volume_ratio': FLOAT(),
            'pe': FLOAT(),
            'pe_ttm': FLOAT(),
            'pb': FLOAT(),
            'ps': FLOAT(),
            'ps_ttm': FLOAT(),
            'dv_ratio': FLOAT(),
            'dv_ttm': FLOAT(),
            'total_share': FLOAT(),
            'float_share': FLOAT(),
            'free_share': FLOAT(),
            'total_mv': FLOAT(),
            'circ_mv': FLOAT()
        }
        df.to_sql(self.get_table_name(),
                  get_engine(),
                  dtype=dtype,
                  index=False,
                  if_exists='append')
Example #3
0
class Translation(Entity):
    using_options(tablename='translation')
    language = Field(camelot.types.Language, index=True)
    source = Field(Unicode(500), index=True)
    # value needs to be indexed as well, because when starting up we
    # want to load only the translations that have a value specified
    value = Field(Unicode(500), index=True)
    cid = Field(INT(), default=0, index=True)
    uid = Field(INT(), default=0, index=True)

    # cache, to prevent too much of the same sql queries
    _cache = dict()

    class Admin(EntityAdmin):
        verbose_name_plural = _('Translations')
        form_size = (700, 150)
        section = 'configuration'
        list_display = ['source', 'language', 'value', 'uid']
        list_filter = ['language']
        list_actions = [ExportAsPO()]
        field_attributes = {'language': {'default': default_language}}

    @classmethod
    def translate(cls, source, language):
        """Translate source to language, return None if no translation is found"""
        if source:
            key = (source, language)
            if key in cls._cache:
                return cls._cache[key]
            translation = cls.query.filter_by(
                source=unicode(source),
                language=language).filter(Translation.uid != 0).first()
            if translation:
                cls._cache[key] = translation.value
                return translation.value
            return None
        return ''

    @classmethod
    def translate_or_register(cls, source, language):
        """Translate source to language, if no translation is found, register the
        source as to be translated and return the source"""
        if source:
            source = unicode(source)
            translation = cls.translate(source, language)
            if not translation:
                if not cls.query.filter_by(source=source,
                                           language=language).first():
                    if (source, language) not in cls._cache:
                        from elixir import session
                        registered_translation = Translation(source=source,
                                                             language=language)
                        cls._cache[(source, language)] = source
                        session.flush([registered_translation])
                        logger.debug('registed %s with id %s' %
                                     (source, registered_translation.id))
                return source
            return translation
        return ''
Example #4
0
def ReadAndWriteSQL(engine):
    engine = DB_Connect()
    sql_str = 'SELECT * FROM user;'
    df = pd.read_sql(sql=sql_str, con=engine)  #从表中读数据
    print(df)
    df.to_sql(name='test2',
              con=engine,
              if_exists='append',
              index=False,
              dtype={
                  'id': INT(),
                  'name': CHAR(length=255),
                  'age': INT()
              })  #把数据存进表中,并创建表
    print(df)
Example #5
0
def init_month_matrix_basic():
    table_name = 'stock_month_matrix_basic'
    sql = 'select * from trade_date where m != 0 ;'
    yms = pd.read_sql_query(sql, get_engine())

    df = None
    for i, row in yms.iterrows():
        first_trade_date_str = row['first'].strftime('%Y%m%d')
        last_last_date_str = row['last'].strftime('%Y%m%d')
        data = __pro.daily_basic(ts_code='', trade_date=last_last_date_str)
        print(last_last_date_str)
        if df is None:
            df = data
        else:
            df = df.append(data)
    df_add_y_m(df, 'trade_date')
    df.reset_index(drop=True)
    df = df.iloc[::-1]
    dtype = {
        'ts_code': VARCHAR(length=10),
        'trade_date': DATE(),
        'close': FLOAT(),
        'y': INT(),
        'm': INT(),
        'turnover_rate': FLOAT(),
        'turnover_rate_f': FLOAT(),
        'volume_ratio': FLOAT(),
        'pe': FLOAT(),
        'pe_ttm': FLOAT(),
        'pb': FLOAT(),
        'ps': FLOAT(),
        'ps_ttm': FLOAT(),
        'dv_ratio': FLOAT(),
        'dv_ttm': FLOAT(),
        'total_share': FLOAT(),
        'float_share': FLOAT(),
        'free_share': FLOAT(),
        'total_mv': FLOAT(),
        'circ_mv': FLOAT()
    }
    df.to_sql(table_name,
              get_engine(),
              dtype=dtype,
              index=False,
              if_exists='append')
Example #6
0
class Dividend(CodeDao):
    DTYPE = {'ts_code': VARCHAR(length=10), 'end_date': DATE(), 'y': INT(), 'm': INT(), 'ann_date': DATE(),
             'div_proc': VARCHAR(length=10),
             'stk_div': Float(precision=53), 'stk_bo_rate': Float(precision=53), 'stk_co_rate': Float(precision=53),
             'cash_div': Float(precision=53),
             'cash_div_tax': Float(precision=53), 'record_date': DATE(), 'ex_date': DATE(), 'pay_date': DATE(),
             'div_listdate': VARCHAR(length=10),
             'imp_ann_date': DATE(), 'base_date': DATE(), 'base_share': Float(precision=53)}

    def __init__(self, ts_code):
        super().__init__(ts_code)
        self._interface = 'dividend'
        self._dtype = __class__.DTYPE
        self._fields = ','.join(__class__.DTYPE).replace('y,m,', '')

    def _clean(self):
        self._df = self._df[self._df['div_proc'].str.contains('实施')]

    def _add_y_m(self):
        self._add_y()

    def _second_process(self):
        table_name = self._interface + '_stat'

        df = self._df

        grouped = df.groupby('y')
        r = grouped[['stk_div', 'cash_div']].agg([np.sum])
        r = r.reset_index()
        r = r.rename(columns={('stk_div', 'sum'): 'stk_div', ('cash_div', 'sum'): 'cash_div', ('y'): 'y'})
        r = r.sort_values(by=['y'], ascending=False)

        data = {'ts_code': np.full((len(r)), self._key), 'y': r['y'], 'stk_div': r[('stk_div', 'sum')],
                'cash_div': r[('cash_div', 'sum')]}
        df = pd.DataFrame(data)
        dtype = {'ts_code': VARCHAR(length=10), 'end_date': DATE(), 'y': INT(),
                 'stk_div': DECIMAL(precision=10, scale=8), 'cash_div': DECIMAL(precision=12, scale=8)}

        df.to_sql(table_name, get_engine(), dtype=dtype, index=False, if_exists='append')
Example #7
0
 def __init__(self):
     self.game_dtype = {
         'datetime': DATETIME,
         'change_time': VARCHAR(20),
         'company': VARCHAR(50),
         'game_id': INT(),
         'line': VARCHAR(20),
         'odds_away': FLOAT(5, 2),
         'odds_home': FLOAT(5, 2),
         'score': VARCHAR(20),
         'odds_down': FLOAT(5, 2),
         'odds_over': FLOAT(5, 2),
         'score_away': VARCHAR(20),
         'score_home': VARCHAR(20),
         'team_away': VARCHAR(20),
         'team_away_f': VARCHAR(20),
         'team_away_id': INT(),
         'team_away_rank': VARCHAR(20),
         'team_home': VARCHAR(20),
         'team_home_f': VARCHAR(20),
         'team_home_id': INT(),
         'team_home_rank': VARCHAR(20),
         'grr': FLOAT(5, 2),
         'kelly_away': FLOAT(5, 2),
         'kelly_home': FLOAT(5, 2),
         'kelly_tie': FLOAT(5, 2),
         'odds_away': FLOAT(5, 2),
         'odds_home': FLOAT(5, 2),
         'odds_tie': FLOAT(5, 2),
         'probability_away': FLOAT(5, 2),
         'probability_home': FLOAT(5, 2),
         'probability_tie': FLOAT(5, 2),
         'team_home_en': VARCHAR(50),
         'team_away_en': VARCHAR(50),
         'league': VARCHAR(20),
         'league_f': VARCHAR(20),
         'league_en': VARCHAR(20),
         'league_id': INT(),
     }
Example #8
0
 def insert_data(self, dataframe):
     self.logger.info('create engine and connect to database')
     engine = sqlalchemy.create_engine(
         f'{self.database_type}://{self.database_login}:{self.database_password}@{self.database_url}/{self.database_name}'
     )
     self.logger.info('prepare to insert data')
     dataframe.to_sql('etl_hh',
                      schema='adhoc_parser',
                      con=engine,
                      if_exists='append',
                      index=False,
                      dtype={
                          'id': INT(),
                          'name': String(255),
                          'has_test': Boolean(),
                          'published_at': DateTime(),
                          'created_at': DateTime(),
                          'url': String(255),
                          'area_name': String(255),
                          'salary_from': INT(),
                          'salary_to': INT(),
                          'salary_currency': String(10),
                          'salary.gross': Boolean(),
                          'address.city': String(255),
                          'address.street': String(255),
                          'address_building': String(255),
                          'address_raw': String(500),
                          'metro_name': String(255),
                          'employer_id': INT(),
                          'employer_name': String(255),
                          'snippet_requirement': TEXT(),
                          'snippet_responsibility': TEXT(),
                          'contacts_name': String(255),
                          'contacts_email': String(255),
                      })
     self.logger.warning('data are inserted now')
Example #9
0
    def _second_process(self):
        table_name = self._interface + '_stat'

        df = self._df

        grouped = df.groupby('y')
        r = grouped[['stk_div', 'cash_div']].agg([np.sum])
        r = r.reset_index()
        r = r.rename(columns={('stk_div', 'sum'): 'stk_div', ('cash_div', 'sum'): 'cash_div', ('y'): 'y'})
        r = r.sort_values(by=['y'], ascending=False)

        data = {'ts_code': np.full((len(r)), self._key), 'y': r['y'], 'stk_div': r[('stk_div', 'sum')],
                'cash_div': r[('cash_div', 'sum')]}
        df = pd.DataFrame(data)
        dtype = {'ts_code': VARCHAR(length=10), 'end_date': DATE(), 'y': INT(),
                 'stk_div': DECIMAL(precision=10, scale=8), 'cash_div': DECIMAL(precision=12, scale=8)}

        df.to_sql(table_name, get_engine(), dtype=dtype, index=False, if_exists='append')
Example #10
0
class FixtureVersion(Entity):
    """Keep track of the version the fixtures have in the current database, the subversion
    revision number is a good candidate to be used as a fixture version.
    
    :return: an integer representing the current version, 0 if no version found
    """
    using_options(tablename='fixture_version')
    fixture_version = Field(INT(), index=True, required=True, default=0)
    fixture_class = Field(Unicode(256),
                          index=True,
                          required=False,
                          unique=True)

    @classmethod
    def get_current_version(cls, fixture_class=None):
        """Get the current version of the fixtures in the database for a certain 
        fixture class.
        
        :param fixture_class: the fixture class for which to get the version
        """
        obj = cls.query.filter_by(fixture_class=fixture_class).first()
        if obj:
            return obj.fixture_version
        return 0

    @classmethod
    def set_current_version(cls, fixture_class=None, fixture_version=0):
        """Set the current version of the fixtures in the database for a certain 
        fixture class.
        
        :param fixture_class: the fixture class for which to get the version
        :param fixture_version: the version number to which to set the fixture version
        """
        from sqlalchemy.orm.session import Session
        obj = cls.query.filter_by(fixture_class=fixture_class).first()
        if not obj:
            obj = FixtureVersion(fixture_class=fixture_class)
        obj.fixture_version = fixture_version
        Session.object_session(obj).flush([obj])
Example #11
0
class Memento( Entity ):
    """Keeps information on the previous state of objects, to keep track
    of changes and enable restore to that previous state"""
    using_options( tablename = 'memento' )
    model = Field( Unicode( 256 ), index = True, required = True )
    primary_key = Field( INT(), index = True, required = True )
    creation_date = Field( DateTime(), default = datetime.datetime.now )
    authentication = ManyToOne( 'AuthenticationMechanism',
                               required = True,
                               ondelete = 'restrict',
                               onupdate = 'cascade' )
    description = property( lambda self:'Change' )

    class Admin( EntityAdmin ):
        verbose_name = _( 'History' )
        verbose_name_plural = _( 'History' )
        list_display = ['creation_date',
                        'authentication',
                        'model',
                        'primary_key',
                        'description']
        list_filter = [filters.ComboBoxFilter('model')]
Example #12
0
df = df_raw.dropna()

df.to_sql(con=engine,
          name=instrument,
          if_exists='replace',
          index_label='ID',
          chunksize=10000,
          dtype={
              'DATE': DATE(),
              'TIME': TIME(),
              'OPEN': DECIMAL(6, 5),
              'HIGH': DECIMAL(6, 5),
              'LOW': DECIMAL(6, 5),
              'CLOSE': DECIMAL(6, 5),
              'TICKVOL': INT(),
              'RETURN1': DECIMAL(6, 5),
              'RETURN5': DECIMAL(6, 5),
              'RETURN15': DECIMAL(6, 5),
              'RETURN60': DECIMAL(6, 5),
              'RETURN240': DECIMAL(6, 5),
              'RETURN1440': DECIMAL(6, 5),
              'RETURN4320': DECIMAL(6, 5),
              'PCTL15': DECIMAL(6, 5),
              'PCTL60': DECIMAL(6, 5),
              'PCTL240': DECIMAL(6, 5),
              'PCTL1440': DECIMAL(6, 5),
              'PCTL4320': DECIMAL(6, 5),
              'MA200DIF': DECIMAL(6, 5),
              'MA1260DIF': DECIMAL(6, 5),
              'MA3000DIF': DECIMAL(6, 5),
Example #13
0
        r = r.reset_index()
        r = r.rename(columns={('stk_div', 'sum'): 'stk_div', ('cash_div', 'sum'): 'cash_div', ('y'): 'y'})
        r = r.sort_values(by=['y'], ascending=False)

        data = {'ts_code': np.full((len(r)), self._biz_code), 'y': r['y'], 'stk_div': r[('stk_div', 'sum')],
                'cash_div': r[('cash_div', 'sum')]}
        df = pd.DataFrame(data)
        dtype = {'ts_code': VARCHAR(length=10), 'end_date': DATE(), 'y': INT(),
                 'stk_div': DECIMAL(precision=10, scale=8), 'cash_div': DECIMAL(precision=12, scale=8)}

        df.to_sql(table_name, get_engine(), dtype=dtype, index=False, if_exists='append')


_type_mapping = {
    'balancesheet': {'ts_code': VARCHAR(length=10), 'ann_date': DATE(), 'f_ann_date': DATE(), 'end_date': DATE(),
                     'y': INT(),
                     'm': INT(),
                     'report_type': VARCHAR(length=1), 'comp_type': VARCHAR(length=1),
                     'total_share': Float(precision=53),
                     'cap_rese': Float(precision=53), 'undistr_porfit': Float(precision=53),
                     'surplus_rese': Float(precision=53),
                     'special_rese': Float(precision=53), 'money_cap': Float(precision=53),
                     'trad_asset': Float(precision=53),
                     'notes_receiv': Float(precision=53), 'accounts_receiv': Float(precision=53),
                     'oth_receiv': Float(precision=53),
                     'prepayment': Float(precision=53), 'div_receiv': Float(precision=53),
                     'int_receiv': Float(precision=53),
                     'inventories': Float(precision=53), 'amor_exp': Float(precision=53),
                     'nca_within_1y': Float(precision=53),
                     'sett_rsrv': Float(precision=53), 'loanto_oth_bank_fi': Float(precision=53),
                     'premium_receiv': Float(precision=53),
Example #14
0
def init_fina_indicator(ts_code, force=None):
    table_name = 'stock_fina_indicator'

    if not need_pull_check(ts_code, table_name, force):
        print('need not 2 pull {} -> {}'.format(table_name, ts_code))
        return
    else:
        print('start 2 pull {} -> {} .'.format(table_name, ts_code))

    dtype = {
        'ts_code': VARCHAR(length=10),
        'ann_date': DATE(),
        'end_date': DATE(),
        'y': INT(),
        'm': INT(),
        'eps': FLOAT(),
        'dt_eps': FLOAT(),
        'total_revenue_ps': FLOAT(),
        'revenue_ps': FLOAT(),
        'capital_rese_ps': FLOAT(),
        'surplus_rese_ps': FLOAT(),
        'undist_profit_ps': FLOAT(),
        'extra_item': FLOAT(),
        'profit_dedt': FLOAT(),
        'gross_margin': FLOAT(),
        'current_ratio': FLOAT(),
        'quick_ratio': FLOAT(),
        'cash_ratio': FLOAT(),
        'invturn_days': FLOAT(),
        'arturn_days': FLOAT(),
        'inv_turn': FLOAT(),
        'ar_turn': FLOAT(),
        'ca_turn': FLOAT(),
        'fa_turn': FLOAT(),
        'assets_turn': FLOAT(),
        'op_income': FLOAT(),
        'valuechange_income': FLOAT(),
        'interst_income': FLOAT(),
        'daa': FLOAT(),
        'ebit': FLOAT(),
        'ebitda': FLOAT(),
        'fcff': FLOAT(),
        'fcfe': FLOAT(),
        'current_exint': FLOAT(),
        'noncurrent_exint': FLOAT(),
        'interestdebt': FLOAT(),
        'netdebt': FLOAT(),
        'tangible_asset': FLOAT(),
        'working_capital': FLOAT(),
        'networking_capital': FLOAT(),
        'invest_capital': FLOAT(),
        'retained_earnings': FLOAT(),
        'diluted2_eps': FLOAT(),
        'bps': FLOAT(),
        'ocfps': FLOAT(),
        'retainedps': FLOAT(),
        'cfps': FLOAT(),
        'ebit_ps': FLOAT(),
        'fcff_ps': FLOAT(),
        'fcfe_ps': FLOAT(),
        'netprofit_margin': FLOAT(),
        'grossprofit_margin': FLOAT(),
        'cogs_of_sales': FLOAT(),
        'expense_of_sales': FLOAT(),
        'profit_to_gr': FLOAT(),
        'saleexp_to_gr': FLOAT(),
        'adminexp_of_gr': FLOAT(),
        'finaexp_of_gr': FLOAT(),
        'impai_ttm': FLOAT(),
        'gc_of_gr': FLOAT(),
        'op_of_gr': FLOAT(),
        'ebit_of_gr': FLOAT(),
        'roe': FLOAT(),
        'roe_waa': FLOAT(),
        'roe_dt': FLOAT(),
        'roa': FLOAT(),
        'npta': FLOAT(),
        'roic': FLOAT(),
        'roe_yearly': FLOAT(),
        'roa2_yearly': FLOAT(),
        'roe_avg': FLOAT(),
        'opincome_of_ebt': FLOAT(),
        'investincome_of_ebt': FLOAT(),
        'n_op_profit_of_ebt': FLOAT(),
        'tax_to_ebt': FLOAT(),
        'dtprofit_to_profit': FLOAT(),
        'salescash_to_or': FLOAT(),
        'ocf_to_or': FLOAT(),
        'ocf_to_opincome': FLOAT(),
        'capitalized_to_da': FLOAT(),
        'debt_to_assets': FLOAT(),
        'assets_to_eqt': FLOAT(),
        'dp_assets_to_eqt': FLOAT(),
        'ca_to_assets': FLOAT(),
        'nca_to_assets': FLOAT(),
        'tbassets_to_totalassets': FLOAT(),
        'int_to_talcap': FLOAT(),
        'eqt_to_talcapital': FLOAT(),
        'currentdebt_to_debt': FLOAT(),
        'longdeb_to_debt': FLOAT(),
        'ocf_to_shortdebt': FLOAT(),
        'debt_to_eqt': FLOAT(),
        'eqt_to_debt': FLOAT(),
        'eqt_to_interestdebt': FLOAT(),
        'tangibleasset_to_debt': FLOAT(),
        'tangasset_to_intdebt': FLOAT(),
        'tangibleasset_to_netdebt': FLOAT(),
        'ocf_to_debt': FLOAT(),
        'ocf_to_interestdebt': FLOAT(),
        'ocf_to_netdebt': FLOAT(),
        'ebit_to_interest': FLOAT(),
        'longdebt_to_workingcapital': FLOAT(),
        'ebitda_to_debt': FLOAT(),
        'turn_days': FLOAT(),
        'roa_yearly': FLOAT(),
        'roa_dp': FLOAT(),
        'fixed_assets': FLOAT(),
        'profit_prefin_exp': FLOAT(),
        'non_op_profit': FLOAT(),
        'op_to_ebt': FLOAT(),
        'nop_to_ebt': FLOAT(),
        'ocf_to_profit': FLOAT(),
        'cash_to_liqdebt': FLOAT(),
        'cash_to_liqdebt_withinterest': FLOAT(),
        'op_to_liqdebt': FLOAT(),
        'op_to_debt': FLOAT(),
        'roic_yearly': FLOAT(),
        'total_fa_trun': FLOAT(),
        'profit_to_op': FLOAT(),
        'q_opincome': FLOAT(),
        'q_investincome': FLOAT(),
        'q_dtprofit': FLOAT(),
        'q_eps': FLOAT(),
        'q_netprofit_margin': FLOAT(),
        'q_gsprofit_margin': FLOAT(),
        'q_exp_to_sales': FLOAT(),
        'q_profit_to_gr': FLOAT(),
        'q_saleexp_to_gr': FLOAT(),
        'q_adminexp_to_gr': FLOAT(),
        'q_finaexp_to_gr': FLOAT(),
        'q_impair_to_gr_ttm': FLOAT(),
        'q_gc_to_gr': FLOAT(),
        'q_op_to_gr': FLOAT(),
        'q_roe': FLOAT(),
        'q_dt_roe': FLOAT(),
        'q_npta': FLOAT(),
        'q_opincome_to_ebt': FLOAT(),
        'q_investincome_to_ebt': FLOAT(),
        'q_dtprofit_to_profit': FLOAT(),
        'q_salescash_to_or': FLOAT(),
        'q_ocf_to_sales': FLOAT(),
        'q_ocf_to_or': FLOAT(),
        'basic_eps_yoy': FLOAT(),
        'dt_eps_yoy': FLOAT(),
        'cfps_yoy': FLOAT(),
        'op_yoy': FLOAT(),
        'ebt_yoy': FLOAT(),
        'netprofit_yoy': FLOAT(),
        'dt_netprofit_yoy': FLOAT(),
        'ocf_yoy': FLOAT(),
        'roe_yoy': FLOAT(),
        'bps_yoy': FLOAT(),
        'assets_yoy': FLOAT(),
        'eqt_yoy': FLOAT(),
        'tr_yoy': FLOAT(),
        'or_yoy': FLOAT(),
        'q_gr_yoy': FLOAT(),
        'q_gr_qoq': FLOAT(),
        'q_sales_yoy': FLOAT(),
        'q_sales_qoq': FLOAT(),
        'q_op_yoy': FLOAT(),
        'q_op_qoq': FLOAT(),
        'q_profit_yoy': FLOAT(),
        'q_profit_qoq': FLOAT(),
        'q_netprofit_yoy': FLOAT(),
        'q_netprofit_qoq': FLOAT(),
        'equity_yoy': FLOAT(),
        'rd_exp': FLOAT(),
        'update_flag': VARCHAR(length=1)
    }
    columns = 'ts_code,ann_date,end_date,eps,dt_eps,total_revenue_ps,revenue_ps,capital_rese_ps,surplus_rese_ps,undist_profit_ps,extra_item,profit_dedt,gross_margin,current_ratio,quick_ratio,cash_ratio,invturn_days,arturn_days,inv_turn,ar_turn,ca_turn,fa_turn,assets_turn,op_income,valuechange_income,interst_income,daa,ebit,ebitda,fcff,fcfe,current_exint,noncurrent_exint,interestdebt,netdebt,tangible_asset,working_capital,networking_capital,invest_capital,retained_earnings,diluted2_eps,bps,ocfps,retainedps,cfps,ebit_ps,fcff_ps,fcfe_ps,netprofit_margin,grossprofit_margin,cogs_of_sales,expense_of_sales,profit_to_gr,saleexp_to_gr,adminexp_of_gr,finaexp_of_gr,impai_ttm,gc_of_gr,op_of_gr,ebit_of_gr,roe,roe_waa,roe_dt,roa,npta,roic,roe_yearly,roa2_yearly,roe_avg,opincome_of_ebt,investincome_of_ebt,n_op_profit_of_ebt,tax_to_ebt,dtprofit_to_profit,salescash_to_or,ocf_to_or,ocf_to_opincome,capitalized_to_da,debt_to_assets,assets_to_eqt,dp_assets_to_eqt,ca_to_assets,nca_to_assets,tbassets_to_totalassets,int_to_talcap,eqt_to_talcapital,currentdebt_to_debt,longdeb_to_debt,ocf_to_shortdebt,debt_to_eqt,eqt_to_debt,eqt_to_interestdebt,tangibleasset_to_debt,tangasset_to_intdebt,tangibleasset_to_netdebt,ocf_to_debt,ocf_to_interestdebt,ocf_to_netdebt,ebit_to_interest,longdebt_to_workingcapital,ebitda_to_debt,turn_days,roa_yearly,roa_dp,fixed_assets,profit_prefin_exp,non_op_profit,op_to_ebt,nop_to_ebt,ocf_to_profit,cash_to_liqdebt,cash_to_liqdebt_withinterest,op_to_liqdebt,op_to_debt,roic_yearly,total_fa_trun,profit_to_op,q_opincome,q_investincome,q_dtprofit,q_eps,q_netprofit_margin,q_gsprofit_margin,q_exp_to_sales,q_profit_to_gr,q_saleexp_to_gr,q_adminexp_to_gr,q_finaexp_to_gr,q_impair_to_gr_ttm,q_gc_to_gr,q_op_to_gr,q_roe,q_dt_roe,q_npta,q_opincome_to_ebt,q_investincome_to_ebt,q_dtprofit_to_profit,q_salescash_to_or,q_ocf_to_sales,q_ocf_to_or,basic_eps_yoy,dt_eps_yoy,cfps_yoy,op_yoy,ebt_yoy,netprofit_yoy,dt_netprofit_yoy,ocf_yoy,roe_yoy,bps_yoy,assets_yoy,eqt_yoy,tr_yoy,or_yoy,q_gr_yoy,q_gr_qoq,q_sales_yoy,q_sales_qoq,q_op_yoy,q_op_qoq,q_profit_yoy,q_profit_qoq,q_netprofit_yoy,q_netprofit_qoq,equity_yoy,rd_exp,update_flag'
    df = __pro.fina_indicator(ts_code=ts_code,
                              start_date='19901201',
                              end_date='20210101',
                              columns=columns)

    if len(df) == 0:
        print('=' * 32, 'code:{}'.format(ts_code))
        print('error exit middle')
        exit(4)

    # clean
    # df = df.drop_duplicates(["end_date"], keep="first")
    df = drop_more_nan_row(df, 'end_date')

    df_add_y_m(df, 'end_date')

    df.reset_index(drop=True)

    df.to_sql(table_name,
              get_engine(),
              dtype=dtype,
              index=False,
              if_exists='append')
Example #15
0
def init_cashflow(ts_code, force=None):
    table_name = 'stock_cashflow'

    if not need_pull_check(ts_code, table_name, force):
        print('need not 2 pull {} -> {}'.format(table_name, ts_code))
        return
    else:
        print('start 2 pull {} -> {} .'.format(table_name, ts_code))

    dtype = {
        'ts_code': VARCHAR(length=10),
        'ann_date': DATE(),
        'f_ann_date': DATE(),
        'y': INT(),
        'm': INT(),
        'end_date': DATE(),
        'comp_type': VARCHAR(length=1),
        'report_type': VARCHAR(length=1),
        'net_profit': BIGINT(),
        'finan_exp': BIGINT(),
        'c_fr_sale_sg': BIGINT(),
        'recp_tax_rends': BIGINT(),
        'n_depos_incr_fi': BIGINT(),
        'n_incr_loans_cb': BIGINT(),
        'n_inc_borr_oth_fi': BIGINT(),
        'prem_fr_orig_contr': BIGINT(),
        'n_incr_insured_dep': BIGINT(),
        'n_reinsur_prem': BIGINT(),
        'n_incr_disp_tfa': BIGINT(),
        'ifc_cash_incr': BIGINT(),
        'n_incr_disp_faas': BIGINT(),
        'n_incr_loans_oth_bank': BIGINT(),
        'n_cap_incr_repur': BIGINT(),
        'c_fr_oth_operate_a': BIGINT(),
        'c_inf_fr_operate_a': BIGINT(),
        'c_paid_goods_s': BIGINT(),
        'c_paid_to_for_empl': BIGINT(),
        'c_paid_for_taxes': BIGINT(),
        'n_incr_clt_loan_adv': BIGINT(),
        'n_incr_dep_cbob': BIGINT(),
        'c_pay_claims_orig_inco': BIGINT(),
        'pay_handling_chrg': BIGINT(),
        'pay_comm_insur_plcy': BIGINT(),
        'oth_cash_pay_oper_act': BIGINT(),
        'st_cash_out_act': BIGINT(),
        'n_cashflow_act': BIGINT(),
        'oth_recp_ral_inv_act': BIGINT(),
        'c_disp_withdrwl_invest': BIGINT(),
        'c_recp_return_invest': BIGINT(),
        'n_recp_disp_fiolta': BIGINT(),
        'n_recp_disp_sobu': BIGINT(),
        'stot_inflows_inv_act': BIGINT(),
        'c_pay_acq_const_fiolta': BIGINT(),
        'c_paid_invest': BIGINT(),
        'n_disp_subs_oth_biz': BIGINT(),
        'oth_pay_ral_inv_act': BIGINT(),
        'n_incr_pledge_loan': BIGINT(),
        'stot_out_inv_act': BIGINT(),
        'n_cashflow_inv_act': BIGINT(),
        'c_recp_borrow': BIGINT(),
        'proc_issue_bonds': BIGINT(),
        'oth_cash_recp_ral_fnc_act': BIGINT(),
        'stot_cash_in_fnc_act': BIGINT(),
        'free_cashflow': BIGINT(),
        'c_prepay_amt_borr': BIGINT(),
        'c_pay_dist_dpcp_int_exp': BIGINT(),
        'incl_dvd_profit_paid_sc_ms': BIGINT(),
        'oth_cashpay_ral_fnc_act': BIGINT(),
        'stot_cashout_fnc_act': BIGINT(),
        'n_cash_flows_fnc_act': BIGINT(),
        'eff_fx_flu_cash': BIGINT(),
        'n_incr_cash_cash_equ': BIGINT(),
        'c_cash_equ_beg_period': BIGINT(),
        'c_cash_equ_end_period': BIGINT(),
        'c_recp_cap_contrib': BIGINT(),
        'incl_cash_rec_saims': BIGINT(),
        'uncon_invest_loss': BIGINT(),
        'prov_depr_assets': BIGINT(),
        'depr_fa_coga_dpba': BIGINT(),
        'amort_intang_assets': BIGINT(),
        'lt_amort_deferred_exp': BIGINT(),
        'decr_deferred_exp': BIGINT(),
        'incr_acc_exp': BIGINT(),
        'loss_disp_fiolta': BIGINT(),
        'loss_scr_fa': BIGINT(),
        'loss_fv_chg': BIGINT(),
        'invest_loss': BIGINT(),
        'decr_def_inc_tax_assets': BIGINT(),
        'incr_def_inc_tax_liab': BIGINT(),
        'decr_inventories': BIGINT(),
        'decr_oper_payable': BIGINT(),
        'incr_oper_payable': BIGINT(),
        'others': BIGINT(),
        'im_net_cashflow_oper_act': BIGINT(),
        'conv_debt_into_cap': BIGINT(),
        'conv_copbonds_due_within_1y': BIGINT(),
        'fa_fnc_leases': BIGINT(),
        'end_bal_cash': BIGINT(),
        'beg_bal_cash': BIGINT(),
        'end_bal_cash_equ': BIGINT(),
        'beg_bal_cash_equ': BIGINT(),
        'im_n_incr_cash_equ': BIGINT()
    }

    df = __pro.cashflow(ts_code=ts_code,
                        start_date='19901201',
                        end_date='20210101')

    # clean
    # df = df.drop_duplicates(["end_date"], keep="first")
    df = drop_more_nan_row(df, 'end_date')

    df_add_y_m(df, 'end_date')

    df.reset_index(drop=True)

    df.to_sql(table_name,
              get_engine(),
              dtype=dtype,
              index=False,
              if_exists='append')
Example #16
0
def init_income(ts_code, force=None):
    table_name = 'stock_income'

    if not need_pull_check(ts_code, table_name, force):
        print('need not 2 pull {} -> {}'.format(table_name, ts_code))
        return
    else:
        print('start 2 pull {} -> {} '.format(table_name, ts_code))

    dtype = {
        'ts_code': VARCHAR(length=10),
        'ann_date': DATE(),
        'f_ann_date': DATE(),
        'y': INT(),
        'm': INT(),
        'end_date': DATE(),
        'report_type': VARCHAR(length=1),
        'comp_type': VARCHAR(length=1),
        'basic_eps': FLOAT(),
        'diluted_eps': FLOAT(),
        'total_revenue': FLOAT(),
        'revenue': FLOAT(),
        'int_income': FLOAT(),
        'prem_earned': FLOAT(),
        'comm_income': FLOAT(),
        'n_commis_income': FLOAT(),
        'n_oth_income': FLOAT(),
        'n_oth_b_income': FLOAT(),
        'prem_income': FLOAT(),
        'out_prem': FLOAT(),
        'une_prem_reser': FLOAT(),
        'reins_income': FLOAT(),
        'n_sec_tb_income': FLOAT(),
        'n_sec_uw_income': FLOAT(),
        'n_asset_mg_income': FLOAT(),
        'oth_b_income': FLOAT(),
        'fv_value_chg_gain': FLOAT(),
        'invest_income': FLOAT(),
        'ass_invest_income': FLOAT(),
        'forex_gain': FLOAT(),
        'total_cogs': FLOAT(),
        'oper_cost': FLOAT(),
        'int_exp': FLOAT(),
        'comm_exp': FLOAT(),
        'biz_tax_surchg': FLOAT(),
        'sell_exp': FLOAT(),
        'admin_exp': FLOAT(),
        'fin_exp': FLOAT(),
        'assets_impair_loss': FLOAT(),
        'prem_refund': FLOAT(),
        'compens_payout': FLOAT(),
        'reser_insur_liab': FLOAT(),
        'div_payt': FLOAT(),
        'reins_exp': FLOAT(),
        'oper_exp': FLOAT(),
        'compens_payout_refu': FLOAT(),
        'insur_reser_refu': FLOAT(),
        'reins_cost_refund': FLOAT(),
        'other_bus_cost': FLOAT(),
        'operate_profit': FLOAT(),
        'non_oper_income': FLOAT(),
        'non_oper_exp': FLOAT(),
        'nca_disploss': FLOAT(),
        'total_profit': FLOAT(),
        'income_tax': FLOAT(),
        'n_income': FLOAT(),
        'n_income_attr_p': FLOAT(),
        'minority_gain': FLOAT(),
        'oth_compr_income': FLOAT(),
        't_compr_income': FLOAT(),
        'compr_inc_attr_p': FLOAT(),
        'compr_inc_attr_m_s': FLOAT(),
        'ebit': FLOAT(),
        'ebitda': FLOAT(),
        'insurance_exp': FLOAT(),
        'undist_profit': FLOAT(),
        'distable_profit': FLOAT(),
        'update_flag': VARCHAR(length=1)
    }

    df = __pro.income(ts_code=ts_code,
                      start_date='19901201',
                      end_date='20210101')
    # clean
    df = drop_more_nan_row(df, 'end_date')
    # format
    df_add_y_m(df, 'end_date')
    #
    df.reset_index(drop=True)

    df.to_sql(table_name,
              get_engine(),
              dtype=dtype,
              index=False,
              if_exists='append')
Example #17
0
def init_balancesheet(ts_code, force=None):
    table_name = 'stock_balancesheet'

    if not need_pull_check(ts_code, table_name, force):
        print('need not 2 pull {} -> {}'.format(table_name, ts_code))
        return
    else:
        print('start 2 pull {} -> {} .'.format(table_name, ts_code))

    dtype = {
        'ts_code': VARCHAR(length=10),
        'ann_date': DATE(),
        'f_ann_date': DATE(),
        'y': INT(),
        'm': INT(),
        'end_date': DATE(),
        'report_type': VARCHAR(length=1),
        'comp_type': VARCHAR(length=1),
        'total_share': BIGINT(),
        'cap_rese': BIGINT(),
        'undistr_porfit': BIGINT(),
        'surplus_rese': BIGINT(),
        'special_rese': BIGINT(),
        'money_cap': BIGINT(),
        'trad_asset': BIGINT(),
        'notes_receiv': BIGINT(),
        'accounts_receiv': BIGINT(),
        'oth_receiv': BIGINT(),
        'prepayment': BIGINT(),
        'div_receiv': BIGINT(),
        'int_receiv': BIGINT(),
        'inventories': BIGINT(),
        'amor_exp': BIGINT(),
        'nca_within_1y': BIGINT(),
        'sett_rsrv': BIGINT(),
        'loanto_oth_bank_fi': BIGINT(),
        'premium_receiv': BIGINT(),
        'reinsur_receiv': BIGINT(),
        'reinsur_res_receiv': BIGINT(),
        'pur_resale_fa': BIGINT(),
        'oth_cur_assets': BIGINT(),
        'total_cur_assets': BIGINT(),
        'fa_avail_for_sale': BIGINT(),
        'htm_invest': BIGINT(),
        'lt_eqt_invest': BIGINT(),
        'invest_real_estate': BIGINT(),
        'time_deposits': BIGINT(),
        'oth_assets': BIGINT(),
        'lt_rec': BIGINT(),
        'fix_assets': BIGINT(),
        'cip': BIGINT(),
        'const_materials': BIGINT(),
        'fixed_assets_disp': BIGINT(),
        'produc_bio_assets': BIGINT(),
        'oil_and_gas_assets': BIGINT(),
        'intan_assets': BIGINT(),
        'r_and_d': BIGINT(),
        'goodwill': BIGINT(),
        'lt_amor_exp': BIGINT(),
        'defer_tax_assets': BIGINT(),
        'decr_in_disbur': BIGINT(),
        'oth_nca': BIGINT(),
        'total_nca': BIGINT(),
        'cash_reser_cb': BIGINT(),
        'depos_in_oth_bfi': BIGINT(),
        'prec_metals': BIGINT(),
        'deriv_assets': BIGINT(),
        'rr_reins_une_prem': BIGINT(),
        'rr_reins_outstd_cla': BIGINT(),
        'rr_reins_lins_liab': BIGINT(),
        'rr_reins_lthins_liab': BIGINT(),
        'refund_depos': BIGINT(),
        'ph_pledge_loans': BIGINT(),
        'refund_cap_depos': BIGINT(),
        'indep_acct_assets': BIGINT(),
        'client_depos': BIGINT(),
        'client_prov': BIGINT(),
        'transac_seat_fee': BIGINT(),
        'invest_as_receiv': BIGINT(),
        'total_assets': BIGINT(),
        'lt_borr': BIGINT(),
        'st_borr': BIGINT(),
        'cb_borr': BIGINT(),
        'depos_ib_deposits': BIGINT(),
        'loan_oth_bank': BIGINT(),
        'trading_fl': BIGINT(),
        'notes_payable': BIGINT(),
        'acct_payable': BIGINT(),
        'adv_receipts': BIGINT(),
        'sold_for_repur_fa': BIGINT(),
        'comm_payable': BIGINT(),
        'payroll_payable': BIGINT(),
        'taxes_payable': BIGINT(),
        'int_payable': BIGINT(),
        'div_payable': BIGINT(),
        'oth_payable': BIGINT(),
        'acc_exp': BIGINT(),
        'deferred_inc': BIGINT(),
        'st_bonds_payable': BIGINT(),
        'payable_to_reinsurer': BIGINT(),
        'rsrv_insur_cont': BIGINT(),
        'acting_trading_sec': BIGINT(),
        'acting_uw_sec': BIGINT(),
        'non_cur_liab_due_1y': BIGINT(),
        'oth_cur_liab': BIGINT(),
        'total_cur_liab': BIGINT(),
        'bond_payable': BIGINT(),
        'lt_payable': BIGINT(),
        'specific_payables': BIGINT(),
        'estimated_liab': BIGINT(),
        'defer_tax_liab': BIGINT(),
        'defer_inc_non_cur_liab': BIGINT(),
        'oth_ncl': BIGINT(),
        'total_ncl': BIGINT(),
        'depos_oth_bfi': BIGINT(),
        'deriv_liab': BIGINT(),
        'depos': BIGINT(),
        'agency_bus_liab': BIGINT(),
        'oth_liab': BIGINT(),
        'prem_receiv_adva': BIGINT(),
        'depos_received': BIGINT(),
        'ph_invest': BIGINT(),
        'reser_une_prem': BIGINT(),
        'reser_outstd_claims': BIGINT(),
        'reser_lins_liab': BIGINT(),
        'reser_lthins_liab': BIGINT(),
        'indept_acc_liab': BIGINT(),
        'pledge_borr': BIGINT(),
        'indem_payable': BIGINT(),
        'policy_div_payable': BIGINT(),
        'total_liab': BIGINT(),
        'treasury_share': BIGINT(),
        'ordin_risk_reser': BIGINT(),
        'forex_differ': BIGINT(),
        'invest_loss_unconf': BIGINT(),
        'minority_int': BIGINT(),
        'total_hldr_eqy_exc_min_int': BIGINT(),
        'total_hldr_eqy_inc_min_int': BIGINT(),
        'total_liab_hldr_eqy': BIGINT(),
        'lt_payroll_payable': BIGINT(),
        'oth_comp_income': BIGINT(),
        'oth_eqt_tools': BIGINT(),
        'oth_eqt_tools_p_shr': BIGINT(),
        'lending_funds': BIGINT(),
        'acc_receivable': BIGINT(),
        'st_fin_payable': BIGINT(),
        'payables': BIGINT(),
        'hfs_assets': BIGINT(),
        'hfs_sales': BIGINT(),
        'update_flag': VARCHAR(length=1)
    }
    # call
    df = __pro.balancesheet(ts_code=ts_code,
                            start_date='19901201',
                            end_date='20210101')
    # clean
    # df = df.drop_duplicates(["end_date"], keep="first")
    df = drop_more_nan_row(df, 'end_date')
    # format
    df_add_y_m(df, 'end_date')

    df.reset_index(drop=True)
    df.to_sql(table_name,
              get_engine(),
              dtype=dtype,
              index=False,
              if_exists='append')
Example #18
0
def init_dividend(ts_code, force=None):
    table_name = 'stock_dividend_detail'

    if not need_pull_check(ts_code, table_name, force):
        print('need not 2 pull {} -> {}'.format(table_name, ts_code))
        return
    else:
        print('start 2 pull {} -> {} .'.format(table_name, ts_code))
    fields = 'ts_code,end_date,ann_date,div_proc,stk_div,stk_bo_rate,stk_co_rate,cash_div,cash_div_tax,record_date,ex_date,pay_date,div_listdate,imp_ann_date,base_date,base_share'
    df = __pro.dividend(ts_code=ts_code, fields=fields)
    df = df[df['div_proc'].str.contains('实施')]
    df_add_y(df, 'end_date')
    df.reset_index(drop=True)

    dtype = {
        'ts_code': VARCHAR(length=10),
        'end_date': DATE(),
        'div_proc': VARCHAR(length=10),
        'stk_div': DECIMAL(precision=10, scale=8),
        'cash_div': DECIMAL(precision=12, scale=8),
        'ex_date': DATE(),
        'y': INT()
    }

    df.to_sql(table_name,
              get_engine(),
              dtype=dtype,
              index=False,
              if_exists='append')
    '''
        statistical
    '''
    table_name = 'stock_dividend'
    if not need_pull_check(ts_code, table_name, force):
        print('need not 2 pull {} -> {}'.format(table_name, ts_code))
        return
    else:
        print('start 2 pull {} -> {} .'.format(table_name, ts_code))

    grouped = df.groupby('y')
    r = grouped['stk_div', 'cash_div'].agg([np.sum])
    r = r.reset_index()
    r = r.rename(columns={
        ('stk_div', 'sum'): 'stk_div',
        ('cash_div', 'sum'): 'cash_div',
        ('y'): 'y'
    })
    r = r.sort_values(by=['y'], ascending=False)

    data = {
        'ts_code': np.full((len(r)), ts_code),
        'y': r['y'],
        'stk_div': r[('stk_div', 'sum')],
        'cash_div': r[('cash_div', 'sum')]
    }
    df = pd.DataFrame(data)
    dtype = {
        'ts_code': VARCHAR(length=10),
        'end_date': DATE(),
        'y': INT(),
        'stk_div': DECIMAL(precision=10, scale=8),
        'cash_div': DECIMAL(precision=12, scale=8)
    }

    df.to_sql(table_name,
              get_engine(),
              dtype=dtype,
              index=False,
              if_exists='append')
Example #19
0
def init_trade_date():
    template_start = '{}00101'
    template_end = '{}91231'
    data = None
    for i in range(4):
        print(i)
        t = 199 + i
        start, end = template_start.format(t), template_end.format(t)
        df = __pro.query('trade_cal', start_date=start, end_date=end)
        if data is not None:
            data = data.append(df, ignore_index=True)
        else:
            data = df
        print('start:{},date:{}'.format(start, len(data)))

    # data.to_sql('trade_date_o', get_engine(), if_exists='replace', schema=db_name)
    df = data
    df_add_y_m(df, 'cal_date')
    # df['y'] = df['cal_date'].apply(lambda s: int(s[:4]))
    # df['m'] = df['cal_date'].apply(lambda s: int(s[4:6]))

    df.set_index(['y', 'm', 'cal_date'])
    df = df[df['is_open'] == 1]
    df = df.reindex(columns=['y', 'm', 'cal_date', 'is_open', 'exchange'])
    df.to_sql(
        'trade_date_detail',
        get_engine(),
        index=False,
        dtype={
            'cal_date': DATE(),
            'y': Integer(),
            'm': INT(),
            'is_open': INT(),
            'exchange': VARCHAR(8)
        },
        # dtype={'cal_date': 'M8[d]'},
        if_exists='replace')
    '''
    分组插入扩展表
    '''
    grouped_m = df.groupby(['y', 'm'])
    # for a, g in grouped_m:
    #     print(a)
    #     print(g)
    r1 = grouped_m['cal_date'].agg([np.min, np.max])
    r1 = r1.rename(columns={'amin': 'first', 'amax': 'last'})
    r1['y'] = pd.Series(r1.index.get_level_values('y'), index=r1.index)
    r1['m'] = pd.Series(r1.index.get_level_values('m'), index=r1.index)

    grouped_m = df.groupby(['y'])
    r2 = grouped_m['cal_date'].agg([np.min, np.max])
    r2 = r2.rename(columns={'amin': 'first', 'amax': 'last'})
    r2['y'] = pd.Series(r2.index.get_level_values('y'), index=r2.index)
    r2['m'] = pd.Series(np.zeros(len(r2)), index=r2.index)

    r = r1.append(r2, ignore_index=True)
    r = r.reindex(columns=['y', 'm', 'first', 'last'])
    r.to_sql('trade_date',
             get_engine(),
             index=False,
             dtype={
                 'first': DATE(),
                 'last': DATE(),
                 'y': Integer(),
                 'm': INT()
             },
             if_exists='replace')
Example #20
0
class Translation(Entity):
    """Table to store user generated translations or customization.
    """

    __tablename__ = 'translation'

    language = Column(camelot.types.Language, index=True, nullable=False)
    source = Column(Unicode(500), index=True, nullable=False)
    # value needs to be indexed as well, because when starting up we
    # want to load only the translations that have a value specified
    value = Column(Unicode(500), index=True)
    cid = Column(INT(), default=0, index=True)
    uid = Column(INT(), default=0, index=True)

    # cache, to prevent too much of the same sql queries
    _cache = dict()

    class Admin(EntityAdmin):
        verbose_name_plural = _('Translations')
        form_size = (700, 150)
        list_display = ['source', 'language', 'value', 'uid']
        list_filter = ['language']
        list_actions = [ExportAsPO()]
        field_attributes = {'language': {'default': default_language}}

    @classmethod
    def translate(cls, source, language):
        """Translate source to language, return None if no translation is found"""
        if source:
            key = (source, language)
            if key in cls._cache:
                return cls._cache[key]
            query = Session().query(cls)
            query = query.filter(
                sql.and_(cls.source == unicode(source),
                         cls.language == language, cls.uid != 0))
            translation = query.first()
            if translation:
                cls._cache[key] = translation.value
                return translation.value
            return None
        return ''

    @classmethod
    def translate_or_register(cls, source, language):
        """Translate source to language, if no translation is found, register the
        source as to be translated and return the source"""
        if source:
            source = unicode(source)
            translation = cls.translate(source, language)
            if not translation:
                session = Session()
                query = session.query(cls)
                translation = query.filter_by(source=source,
                                              language=language).first()
                if not translation:
                    if (source, language) not in cls._cache:
                        registered_translation = Translation(source=source,
                                                             language=language)
                        cls._cache[(source, language)] = source
                        session.flush([registered_translation])
                        logger.debug('registed %s with id %s' %
                                     (source, registered_translation.id))
                return source
            return translation
        return ''
Example #21
0
class BalanceSheet(CodeDao):
    DTYPE = {'ts_code': VARCHAR(length=10), 'ann_date': DATE(), 'f_ann_date': DATE(), 'end_date': DATE(), 'y': INT(),
             'm': INT(),
             'report_type': VARCHAR(length=1), 'comp_type': VARCHAR(length=1), 'total_share': Float(precision=53),
             'cap_rese': Float(precision=53), 'undistr_porfit': Float(precision=53),
             'surplus_rese': Float(precision=53),
             'special_rese': Float(precision=53), 'money_cap': Float(precision=53), 'trad_asset': Float(precision=53),
             'notes_receiv': Float(precision=53), 'accounts_receiv': Float(precision=53),
             'oth_receiv': Float(precision=53),
             'prepayment': Float(precision=53), 'div_receiv': Float(precision=53), 'int_receiv': Float(precision=53),
             'inventories': Float(precision=53), 'amor_exp': Float(precision=53), 'nca_within_1y': Float(precision=53),
             'sett_rsrv': Float(precision=53), 'loanto_oth_bank_fi': Float(precision=53),
             'premium_receiv': Float(precision=53),
             'reinsur_receiv': Float(precision=53), 'reinsur_res_receiv': Float(precision=53),
             'pur_resale_fa': Float(precision=53),
             'oth_cur_assets': Float(precision=53), 'total_cur_assets': Float(precision=53),
             'fa_avail_for_sale': Float(precision=53),
             'htm_invest': Float(precision=53), 'lt_eqt_invest': Float(precision=53),
             'invest_real_estate': Float(precision=53),
             'time_deposits': Float(precision=53), 'oth_assets': Float(precision=53), 'lt_rec': Float(precision=53),
             'fix_assets': Float(precision=53), 'cip': Float(precision=53), 'const_materials': Float(precision=53),
             'fixed_assets_disp': Float(precision=53), 'produc_bio_assets': Float(precision=53),
             'oil_and_gas_assets': Float(precision=53),
             'intan_assets': Float(precision=53), 'r_and_d': Float(precision=53), 'goodwill': Float(precision=53),
             'lt_amor_exp': Float(precision=53), 'defer_tax_assets': Float(precision=53),
             'decr_in_disbur': Float(precision=53),
             'oth_nca': Float(precision=53), 'total_nca': Float(precision=53), 'cash_reser_cb': Float(precision=53),
             'depos_in_oth_bfi': Float(precision=53), 'prec_metals': Float(precision=53),
             'deriv_assets': Float(precision=53),
             'rr_reins_une_prem': Float(precision=53), 'rr_reins_outstd_cla': Float(precision=53),
             'rr_reins_lins_liab': Float(precision=53), 'rr_reins_lthins_liab': Float(precision=53),
             'refund_depos': Float(precision=53),
             'ph_pledge_loans': Float(precision=53), 'refund_cap_depos': Float(precision=53),
             'indep_acct_assets': Float(precision=53),
             'client_depos': Float(precision=53), 'client_prov': Float(precision=53),
             'transac_seat_fee': Float(precision=53),
             'invest_as_receiv': Float(precision=53), 'total_assets': Float(precision=53),
             'lt_borr': Float(precision=53),
             'st_borr': Float(precision=53), 'cb_borr': Float(precision=53), 'depos_ib_deposits': Float(precision=53),
             'loan_oth_bank': Float(precision=53), 'trading_fl': Float(precision=53),
             'notes_payable': Float(precision=53),
             'acct_payable': Float(precision=53), 'adv_receipts': Float(precision=53),
             'sold_for_repur_fa': Float(precision=53),
             'comm_payable': Float(precision=53), 'payroll_payable': Float(precision=53),
             'taxes_payable': Float(precision=53),
             'int_payable': Float(precision=53), 'div_payable': Float(precision=53), 'oth_payable': Float(precision=53),
             'acc_exp': Float(precision=53), 'deferred_inc': Float(precision=53),
             'st_bonds_payable': Float(precision=53),
             'payable_to_reinsurer': Float(precision=53), 'rsrv_insur_cont': Float(precision=53),
             'acting_trading_sec': Float(precision=53),
             'acting_uw_sec': Float(precision=53), 'non_cur_liab_due_1y': Float(precision=53),
             'oth_cur_liab': Float(precision=53),
             'total_cur_liab': Float(precision=53), 'bond_payable': Float(precision=53),
             'lt_payable': Float(precision=53),
             'specific_payables': Float(precision=53), 'estimated_liab': Float(precision=53),
             'defer_tax_liab': Float(precision=53),
             'defer_inc_non_cur_liab': Float(precision=53), 'oth_ncl': Float(precision=53),
             'total_ncl': Float(precision=53),
             'depos_oth_bfi': Float(precision=53), 'deriv_liab': Float(precision=53), 'depos': Float(precision=53),
             'agency_bus_liab': Float(precision=53), 'oth_liab': Float(precision=53),
             'prem_receiv_adva': Float(precision=53),
             'depos_received': Float(precision=53), 'ph_invest': Float(precision=53),
             'reser_une_prem': Float(precision=53),
             'reser_outstd_claims': Float(precision=53), 'reser_lins_liab': Float(precision=53),
             'reser_lthins_liab': Float(precision=53),
             'indept_acc_liab': Float(precision=53), 'pledge_borr': Float(precision=53),
             'indem_payable': Float(precision=53),
             'policy_div_payable': Float(precision=53), 'total_liab': Float(precision=53),
             'treasury_share': Float(precision=53),
             'ordin_risk_reser': Float(precision=53), 'forex_differ': Float(precision=53),
             'invest_loss_unconf': Float(precision=53),
             'minority_int': Float(precision=53), 'total_hldr_eqy_exc_min_int': Float(precision=53),
             'total_hldr_eqy_inc_min_int': Float(precision=53), 'total_liab_hldr_eqy': Float(precision=53),
             'lt_payroll_payable': Float(precision=53), 'oth_comp_income': Float(precision=53),
             'oth_eqt_tools': Float(precision=53),
             'oth_eqt_tools_p_shr': Float(precision=53), 'lending_funds': Float(precision=53),
             'acc_receivable': Float(precision=53),
             'st_fin_payable': Float(precision=53), 'payables': Float(precision=53), 'hfs_assets': Float(precision=53),
             'hfs_sales': Float(precision=53), 'update_flag': VARCHAR(length=1)}

    def __init__(self, ts_code):
        super().__init__(ts_code)
        self._interface = 'balancesheet'
        self._dtype = __class__.DTYPE
        self._fields = ','.join(__class__.DTYPE).replace('y,m,', '')
Example #22
0
con.commit()
cursor.close()
con.close()

# SQLAlchemy创建表连接
connect_info = 'mysql+mysqlconnector://' + mySqlUserName + ':' + mySqlPassword + '@' + mySqlAddress + ':3306/' + mySqlDataBase
engine = create_engine(connect_info)

# 插入数据,如果存在则替换
print("Insert data into " + mySqlDataBase + ":" + mySqlTable + "\n")
table_0.to_sql(name= mySqlTable,
               con=engine,
               if_exists='replace',
               index_label='id',
               dtype = {
                   'id': INT(),
                   'Ticker': VARCHAR(length=10),
                   'Year': SMALLINT(),
                   'EPSIE': FLOAT()
               }
               )

# 读取数据
print("load data from " + mySqlDataBase + ":" + mySqlTable + "\n")
sql = "SELECT Ticker, Year, EPSIE FROM " + mySqlTable
table_0 = pd.read_sql(sql, con=engine)

company_name = np.unique(table_0['Ticker'].tolist())
print(table_0.Year)
time_0 = 2009 #start time
time_T = 2019 #end time
Example #23
0
class Fixture(Entity):
    """Keep track of static data loaded into the database"""
    using_options(tablename='fixture')
    model = Field(Unicode(256), index=True, required=True)
    primary_key = Field(INT(), index=True, required=True)
    fixture_key = Field(Unicode(256), index=True, required=True)
    fixture_class = Field(Unicode(256), index=True, required=False)

    @classmethod
    def findFixtureReference(cls, entity, fixture_key, fixture_class=None):
        entity_name = unicode(entity.__name__)
        return cls.query.filter_by(model=unicode(entity_name),
                                   fixture_key=fixture_key,
                                   fixture_class=fixture_class).first()

    @classmethod
    def findFixture(cls, entity, fixture_key, fixture_class=None):
        """Find a registered fixture, return None if no fixture is found"""
        reference = cls.findFixtureReference(entity, fixture_key,
                                             fixture_class)
        if reference:
            return entity.get(reference.primary_key)

    @classmethod
    def findFixtureKey(cls, entity, primary_key):
        """Find the fixture key for an object of type entity with primary key
        :return: fixture_key        
        """
        entity_name = unicode(entity.__name__)
        fixture = cls.query.filter_by(model=entity_name,
                                      primary_key=primary_key).first()
        if fixture:
            return fixture.fixture_key
        else:
            return None

    @classmethod
    def findFixtureKeyAndClass(cls, obj):
        """Find the fixture key and class of an object
        @param obj: the object we are looking for 
        @return: (fixture_key, fixture_class) if the object is a registered fixture, (None, None) otherwise
        """
        entity_name = unicode(obj.__class__.__name__)
        fixture = cls.query.filter_by(model=entity_name,
                                      primary_key=obj.id).first()
        if fixture:
            return (fixture.fixture_key, fixture.fixture_class)
        else:
            return (None, None)

    @classmethod
    def findFixtureKeysAndClasses(cls, entity):
        """Load all fixture keys of a certain entity in batch
        :param entity: the model class for which the fixtures should be found
        :return: a dictionary mapping the primary key of a on object of type entity to its (fixture key, fixture class)
        """
        entity_name = unicode(entity.__name__)
        return dict(
            (fixture.primary_key, (fixture.fixture_key, fixture.fixture_class))
            for fixture in cls.query.filter_by(model=entity_name).all())

    @classmethod
    def insertOrUpdateFixture(cls,
                              entity,
                              fixture_key,
                              values,
                              fixture_class=None):
        from sqlalchemy.orm.session import Session
        obj = cls.findFixture(entity, fixture_key, fixture_class)
        store_fixture = False
        if not obj:
            obj = entity()
            store_fixture = True
        obj.from_dict(values)
        Session.object_session(obj).flush([obj])
        if store_fixture:
            #
            # The fixture itself might have been deleted, but the reference might be intact,
            # so this should be updated
            #
            reference = cls.findFixtureReference(entity, fixture_key,
                                                 fixture_class)
            if not reference:
                reference = cls(model=unicode(entity.__name__),
                                primary_key=obj.id,
                                fixture_key=fixture_key,
                                fixture_class=fixture_class)
            else:
                reference.primary_key = obj.id
            Session.object_session(reference).flush([reference])
        return obj

    @classmethod
    def removeAllFixtures(cls, entity):
        for fixture_key, fixture_class in cls.findFixtureKeysAndClasses(
                entity).values():
            cls.removeFixture(entity, fixture_key, fixture_class)

    @classmethod
    def removeFixture(cls, entity, fixture_key, fixture_class):
        """Remove a fixture from the database"""
        # remove the object itself
        from sqlalchemy.orm.session import Session
        obj = cls.findFixture(entity, fixture_key, fixture_class)
        print 'remove', unicode(obj)
        obj.delete()
        Session.object_session(obj).flush([obj])
        # if this succeeeds, remove the reference
        reference = cls.findFixtureReference(entity, fixture_key,
                                             fixture_class)
        reference.delete()
        Session.object_session(reference).flush([reference])
Example #24
0
class Income(CodeDao):
    DTYPE = {'ts_code': VARCHAR(length=10), 'ann_date': DATE(), 'f_ann_date': DATE(), 'y': INT(), 'm': INT(),
             'end_date': DATE(),
             'report_type': VARCHAR(length=1), 'comp_type': VARCHAR(length=1), 'basic_eps': Float(precision=53),
             'diluted_eps': Float(precision=53), 'total_revenue': Float(precision=53), 'revenue': Float(precision=53),
             'int_income': Float(precision=53), 'prem_earned': Float(precision=53), 'comm_income': Float(precision=53),
             'n_commis_income': Float(precision=53), 'n_oth_income': Float(precision=53),
             'n_oth_b_income': Float(precision=53),
             'prem_income': Float(precision=53), 'out_prem': Float(precision=53), 'une_prem_reser': Float(precision=53),
             'reins_income': Float(precision=53), 'n_sec_tb_income': Float(precision=53),
             'n_sec_uw_income': Float(precision=53),
             'n_asset_mg_income': Float(precision=53), 'oth_b_income': Float(precision=53),
             'fv_value_chg_gain': Float(precision=53),
             'invest_income': Float(precision=53), 'ass_invest_income': Float(precision=53),
             'forex_gain': Float(precision=53),
             'total_cogs': Float(precision=53), 'oper_cost': Float(precision=53), 'int_exp': Float(precision=53),
             'comm_exp': Float(precision=53), 'biz_tax_surchg': Float(precision=53), 'sell_exp': Float(precision=53),
             'admin_exp': Float(precision=53), 'fin_exp': Float(precision=53),
             'assets_impair_loss': Float(precision=53),
             'prem_refund': Float(precision=53), 'compens_payout': Float(precision=53),
             'reser_insur_liab': Float(precision=53),
             'div_payt': Float(precision=53), 'reins_exp': Float(precision=53), 'oper_exp': Float(precision=53),
             'compens_payout_refu': Float(precision=53), 'insur_reser_refu': Float(precision=53),
             'reins_cost_refund': Float(precision=53),
             'other_bus_cost': Float(precision=53), 'operate_profit': Float(precision=53),
             'non_oper_income': Float(precision=53),
             'non_oper_exp': Float(precision=53), 'nca_disploss': Float(precision=53),
             'total_profit': Float(precision=53),
             'income_tax': Float(precision=53), 'n_income': Float(precision=53), 'n_income_attr_p': Float(precision=53),
             'minority_gain': Float(precision=53), 'oth_compr_income': Float(precision=53),
             't_compr_income': Float(precision=53),
             'compr_inc_attr_p': Float(precision=53), 'compr_inc_attr_m_s': Float(precision=53),
             'ebit': Float(precision=53),
             'ebitda': Float(precision=53), 'insurance_exp': Float(precision=53), 'undist_profit': Float(precision=53),
             'distable_profit': Float(precision=53), 'update_flag': VARCHAR(length=1)}

    def __init__(self, ts_code):
        super().__init__(ts_code)
        self._interface = 'income'
        self._dtype = __class__.DTYPE
        self._fields = ','.join(__class__.DTYPE).replace('y,m,', '')
Example #25
0
class CashFlow(CodeDao):
    DTYPE = {'ts_code': VARCHAR(length=10), 'ann_date': DATE(), 'f_ann_date': DATE(), 'y': INT(), 'm': INT(),
             'end_date': DATE(),
             'comp_type': VARCHAR(length=1), 'report_type': VARCHAR(length=1), 'net_profit': Float(precision=53),
             'finan_exp': Float(precision=53), 'c_fr_sale_sg': Float(precision=53),
             'recp_tax_rends': Float(precision=53),
             'n_depos_incr_fi': Float(precision=53), 'n_incr_loans_cb': Float(precision=53),
             'n_inc_borr_oth_fi': Float(precision=53),
             'prem_fr_orig_contr': Float(precision=53), 'n_incr_insured_dep': Float(precision=53),
             'n_reinsur_prem': Float(precision=53),
             'n_incr_disp_tfa': Float(precision=53), 'ifc_cash_incr': Float(precision=53),
             'n_incr_disp_faas': Float(precision=53),
             'n_incr_loans_oth_bank': Float(precision=53), 'n_cap_incr_repur': Float(precision=53),
             'c_fr_oth_operate_a': Float(precision=53), 'c_inf_fr_operate_a': Float(precision=53),
             'c_paid_goods_s': Float(precision=53),
             'c_paid_to_for_empl': Float(precision=53), 'c_paid_for_taxes': Float(precision=53),
             'n_incr_clt_loan_adv': Float(precision=53),
             'n_incr_dep_cbob': Float(precision=53), 'c_pay_claims_orig_inco': Float(precision=53),
             'pay_handling_chrg': Float(precision=53), 'pay_comm_insur_plcy': Float(precision=53),
             'oth_cash_pay_oper_act': Float(precision=53), 'st_cash_out_act': Float(precision=53),
             'n_cashflow_act': Float(precision=53),
             'oth_recp_ral_inv_act': Float(precision=53), 'c_disp_withdrwl_invest': Float(precision=53),
             'c_recp_return_invest': Float(precision=53), 'n_recp_disp_fiolta': Float(precision=53),
             'n_recp_disp_sobu': Float(precision=53), 'stot_inflows_inv_act': Float(precision=53),
             'c_pay_acq_const_fiolta': Float(precision=53), 'c_paid_invest': Float(precision=53),
             'n_disp_subs_oth_biz': Float(precision=53), 'oth_pay_ral_inv_act': Float(precision=53),
             'n_incr_pledge_loan': Float(precision=53), 'stot_out_inv_act': Float(precision=53),
             'n_cashflow_inv_act': Float(precision=53),
             'c_recp_borrow': Float(precision=53), 'proc_issue_bonds': Float(precision=53),
             'oth_cash_recp_ral_fnc_act': Float(precision=53), 'stot_cash_in_fnc_act': Float(precision=53),
             'free_cashflow': Float(precision=53), 'c_prepay_amt_borr': Float(precision=53),
             'c_pay_dist_dpcp_int_exp': Float(precision=53),
             'incl_dvd_profit_paid_sc_ms': Float(precision=53), 'oth_cashpay_ral_fnc_act': Float(precision=53),
             'stot_cashout_fnc_act': Float(precision=53), 'n_cash_flows_fnc_act': Float(precision=53),
             'eff_fx_flu_cash': Float(precision=53), 'n_incr_cash_cash_equ': Float(precision=53),
             'c_cash_equ_beg_period': Float(precision=53), 'c_cash_equ_end_period': Float(precision=53),
             'c_recp_cap_contrib': Float(precision=53), 'incl_cash_rec_saims': Float(precision=53),
             'uncon_invest_loss': Float(precision=53), 'prov_depr_assets': Float(precision=53),
             'depr_fa_coga_dpba': Float(precision=53),
             'amort_intang_assets': Float(precision=53), 'lt_amort_deferred_exp': Float(precision=53),
             'decr_deferred_exp': Float(precision=53), 'incr_acc_exp': Float(precision=53),
             'loss_disp_fiolta': Float(precision=53),
             'loss_scr_fa': Float(precision=53), 'loss_fv_chg': Float(precision=53), 'invest_loss': Float(precision=53),
             'decr_def_inc_tax_assets': Float(precision=53), 'incr_def_inc_tax_liab': Float(precision=53),
             'decr_inventories': Float(precision=53), 'decr_oper_payable': Float(precision=53),
             'incr_oper_payable': Float(precision=53),
             'others': Float(precision=53), 'im_net_cashflow_oper_act': Float(precision=53),
             'conv_debt_into_cap': Float(precision=53),
             'conv_copbonds_due_within_1y': Float(precision=53), 'fa_fnc_leases': Float(precision=53),
             'end_bal_cash': Float(precision=53),
             'beg_bal_cash': Float(precision=53), 'end_bal_cash_equ': Float(precision=53),
             'beg_bal_cash_equ': Float(precision=53),
             'im_n_incr_cash_equ': Float(precision=53), 'update_flag': VARCHAR(length=1)}

    def __init__(self, ts_code):
        super().__init__(ts_code)
        self._interface = 'cashflow'
        self._dtype = __class__.DTYPE
        self._fields = ','.join(__class__.DTYPE).replace('y,m,', '')
Example #26
0
class FinaIndicator(CodeDao):
    DTYPE = {'ts_code': VARCHAR(length=10), 'ann_date': DATE(), 'end_date': DATE(), 'y': INT(), 'm': INT(),
             'eps': Float(precision=53),
             'dt_eps': Float(precision=53), 'total_revenue_ps': Float(precision=53), 'revenue_ps': Float(precision=53),
             'capital_rese_ps': Float(precision=53), 'surplus_rese_ps': Float(precision=53),
             'undist_profit_ps': Float(precision=53),
             'extra_item': Float(precision=53), 'profit_dedt': Float(precision=53), 'gross_margin': Float(precision=53),
             'current_ratio': Float(precision=53), 'quick_ratio': Float(precision=53),
             'cash_ratio': Float(precision=53),
             'invturn_days': Float(precision=53), 'arturn_days': Float(precision=53), 'inv_turn': Float(precision=53),
             'ar_turn': Float(precision=53), 'ca_turn': Float(precision=53), 'fa_turn': Float(precision=53),
             'assets_turn': Float(precision=53), 'op_income': Float(precision=53),
             'valuechange_income': Float(precision=53),
             'interst_income': Float(precision=53), 'daa': Float(precision=53), 'ebit': Float(precision=53),
             'ebitda': Float(precision=53),
             'fcff': Float(precision=53), 'fcfe': Float(precision=53), 'current_exint': Float(precision=53),
             'noncurrent_exint': Float(precision=53), 'interestdebt': Float(precision=53),
             'netdebt': Float(precision=53),
             'tangible_asset': Float(precision=53), 'working_capital': Float(precision=53),
             'networking_capital': Float(precision=53),
             'invest_capital': Float(precision=53), 'retained_earnings': Float(precision=53),
             'diluted2_eps': Float(precision=53),
             'bps': Float(precision=53), 'ocfps': Float(precision=53), 'retainedps': Float(precision=53),
             'cfps': Float(precision=53),
             'ebit_ps': Float(precision=53), 'fcff_ps': Float(precision=53), 'fcfe_ps': Float(precision=53),
             'netprofit_margin': Float(precision=53), 'grossprofit_margin': Float(precision=53),
             'cogs_of_sales': Float(precision=53),
             'expense_of_sales': Float(precision=53), 'profit_to_gr': Float(precision=53),
             'saleexp_to_gr': Float(precision=53),
             'adminexp_of_gr': Float(precision=53), 'finaexp_of_gr': Float(precision=53),
             'impai_ttm': Float(precision=53),
             'gc_of_gr': Float(precision=53), 'op_of_gr': Float(precision=53), 'ebit_of_gr': Float(precision=53),
             'roe': Float(precision=53), 'roe_waa': Float(precision=53), 'roe_dt': Float(precision=53),
             'roa': Float(precision=53),
             'npta': Float(precision=53), 'roic': Float(precision=53), 'roe_yearly': Float(precision=53),
             'roa2_yearly': Float(precision=53), 'roe_avg': Float(precision=53), 'opincome_of_ebt': Float(precision=53),
             'investincome_of_ebt': Float(precision=53), 'n_op_profit_of_ebt': Float(precision=53),
             'tax_to_ebt': Float(precision=53),
             'dtprofit_to_profit': Float(precision=53), 'salescash_to_or': Float(precision=53),
             'ocf_to_or': Float(precision=53),
             'ocf_to_opincome': Float(precision=53), 'capitalized_to_da': Float(precision=53),
             'debt_to_assets': Float(precision=53),
             'assets_to_eqt': Float(precision=53), 'dp_assets_to_eqt': Float(precision=53),
             'ca_to_assets': Float(precision=53),
             'nca_to_assets': Float(precision=53), 'tbassets_to_totalassets': Float(precision=53),
             'int_to_talcap': Float(precision=53),
             'eqt_to_talcapital': Float(precision=53), 'currentdebt_to_debt': Float(precision=53),
             'longdeb_to_debt': Float(precision=53),
             'ocf_to_shortdebt': Float(precision=53), 'debt_to_eqt': Float(precision=53),
             'eqt_to_debt': Float(precision=53),
             'eqt_to_interestdebt': Float(precision=53), 'tangibleasset_to_debt': Float(precision=53),
             'tangasset_to_intdebt': Float(precision=53), 'tangibleasset_to_netdebt': Float(precision=53),
             'ocf_to_debt': Float(precision=53), 'ocf_to_interestdebt': Float(precision=53),
             'ocf_to_netdebt': Float(precision=53),
             'ebit_to_interest': Float(precision=53), 'longdebt_to_workingcapital': Float(precision=53),
             'ebitda_to_debt': Float(precision=53), 'turn_days': Float(precision=53), 'roa_yearly': Float(precision=53),
             'roa_dp': Float(precision=53), 'fixed_assets': Float(precision=53),
             'profit_prefin_exp': Float(precision=53),
             'non_op_profit': Float(precision=53), 'op_to_ebt': Float(precision=53), 'nop_to_ebt': Float(precision=53),
             'ocf_to_profit': Float(precision=53), 'cash_to_liqdebt': Float(precision=53),
             'cash_to_liqdebt_withinterest': Float(precision=53), 'op_to_liqdebt': Float(precision=53),
             'op_to_debt': Float(precision=53),
             'roic_yearly': Float(precision=53), 'total_fa_trun': Float(precision=53),
             'profit_to_op': Float(precision=53),
             'q_opincome': Float(precision=53), 'q_investincome': Float(precision=53),
             'q_dtprofit': Float(precision=53),
             'q_eps': Float(precision=53), 'q_netprofit_margin': Float(precision=53),
             'q_gsprofit_margin': Float(precision=53),
             'q_exp_to_sales': Float(precision=53), 'q_profit_to_gr': Float(precision=53),
             'q_saleexp_to_gr': Float(precision=53),
             'q_adminexp_to_gr': Float(precision=53), 'q_finaexp_to_gr': Float(precision=53),
             'q_impair_to_gr_ttm': Float(precision=53),
             'q_gc_to_gr': Float(precision=53), 'q_op_to_gr': Float(precision=53), 'q_roe': Float(precision=53),
             'q_dt_roe': Float(precision=53), 'q_npta': Float(precision=53), 'q_opincome_to_ebt': Float(precision=53),
             'q_investincome_to_ebt': Float(precision=53), 'q_dtprofit_to_profit': Float(precision=53),
             'q_salescash_to_or': Float(precision=53), 'q_ocf_to_sales': Float(precision=53),
             'q_ocf_to_or': Float(precision=53),
             'basic_eps_yoy': Float(precision=53), 'dt_eps_yoy': Float(precision=53), 'cfps_yoy': Float(precision=53),
             'op_yoy': Float(precision=53), 'ebt_yoy': Float(precision=53), 'netprofit_yoy': Float(precision=53),
             'dt_netprofit_yoy': Float(precision=53), 'ocf_yoy': Float(precision=53), 'roe_yoy': Float(precision=53),
             'bps_yoy': Float(precision=53), 'assets_yoy': Float(precision=53), 'eqt_yoy': Float(precision=53),
             'tr_yoy': Float(precision=53), 'or_yoy': Float(precision=53), 'q_gr_yoy': Float(precision=53),
             'q_gr_qoq': Float(precision=53),
             'q_sales_yoy': Float(precision=53), 'q_sales_qoq': Float(precision=53), 'q_op_yoy': Float(precision=53),
             'q_op_qoq': Float(precision=53), 'q_profit_yoy': Float(precision=53), 'q_profit_qoq': Float(precision=53),
             'q_netprofit_yoy': Float(precision=53), 'q_netprofit_qoq': Float(precision=53),
             'equity_yoy': Float(precision=53),
             'rd_exp': Float(precision=53), 'update_flag': VARCHAR(length=1)}

    def __init__(self, ts_code):
        super().__init__(ts_code)
        self._interface = 'fina_indicator'
        self._dtype = __class__.DTYPE
        self._fields = ','.join(__class__.DTYPE).replace('y,m,', '')