Example #1
0
def read_decay_bs(psql,params,meson):
    if meson=='pion':
        mq1 = params['decay_ward_fit']['ml']
        mq2 = mq1
    elif meson == 'kaon':
        mq1 = params['decay_ward_fit']['ml']
        mq2 = params['decay_ward_fit']['ms']
    elif meson == 'etas':
        mq1 = params['decay_ward_fit']['ms']
        mq2 = mq1
    print 'readon meson two point', mq1, mq2
    tag = params['decay_ward_fit']['ens']['tag']
    stream = params['decay_ward_fit']['ens']['stream']
    mesp = params[tag][meson]['%s_%s' %(str(mq1),str(mq2))]
    # read data
    SS = c51.fold(psql.data('dwhisq_corr_meson',mesp['meta_id']['SS']))
    PS = c51.fold(psql.data('dwhisq_corr_meson',mesp['meta_id']['PS']))
    return SS, PS
Example #2
0
def read_decay_bs(psql, params, meson):
    if meson == 'pion':
        mq1 = params['decay_ward_fit']['ml']
        mq2 = mq1
    elif meson == 'kaon':
        mq1 = params['decay_ward_fit']['ml']
        mq2 = params['decay_ward_fit']['ms']
    elif meson == 'etas':
        mq1 = params['decay_ward_fit']['ms']
        mq2 = mq1
    print 'reading meson two point', mq1, mq2
    tag = params['decay_ward_fit']['ens']['tag']
    stream = params['decay_ward_fit']['ens']['stream']
    mesp = params[tag][meson]['%s_%s' % (str(mq1), str(mq2))]
    # read data
    SS = c51.fold(psql.data('dwhisq_corr_meson', mesp['meta_id']['SS']))
    PS = c51.fold(psql.data('dwhisq_corr_meson', mesp['meta_id']['PS']))
    return SS, PS
Example #3
0
def read_hisq_meson(psql,params,meson):
    if meson in ['phi_jj_5', 'phi_jj_I']:
        mq1 = params['hisq_fit']['ml']
        mq2 = mq1
    elif meson in ['phi_jr_5', 'phi_jr_I']:
        mq1 = params['hisq_fit']['ml']
        mq2 = params['hisq_fit']['ms']
    elif meson in ['phi_rr_5', 'phi_rr_I']:
        mq1 = params['hisq_fit']['ms']
        mq2 = mq1
    print 'reading meson two point', mq1, mq2
    tag = params['hisq_fit']['ens']['tag']
    stream = params['hisq_fit']['ens']['stream']
    mesp = params[tag][meson]['%s_%s' %(str(mq1),str(mq2))]
    # read data
    data = c51.fold(psql.data('dwhisq_corr_meson',mesp['meta_id']))
    return data
Example #4
0
def read_axial(psql, params, meson):
    ml = params['axial_fit']['ml']
    ms = params['axial_fit']['ms']
    print 'reading %s' % (meson)
    tag = params['axial_fit']['ens']['tag']
    stream = params['axial_fit']['ens']['stream']
    Nbs = params['axial_fit']['nbs']
    Mbs = params['axial_fit']['mbs']
    if meson == 'axial_ll':
        axialp = params[tag][meson]['%s_%s' % (ml, ml)]
    elif meson == 'axial_ls':
        axialp = params[tag][meson]['%s_%s' % (ml, ms)]
    # read data
    data = c51.fold(psql.data('dwhisq_corr_meson', axialp['meta_id']['PS']),
                    -1)
    #data= psql.data('dwhisq_corr_meson',axialp['meta_id']['PS'])
    return data
Example #5
0
def read_mixed_meson(psql,params,meson):
    tag = params['mixed_fit']['ens']['tag']
    stream = params['mixed_fit']['ens']['stream']
    ml = "0.%s" %tag.split('m')[1]
    ms = "0.%s" %tag.split('m')[2]
    print ml, ms
    if meson in ['phi_ju']:
        mq1 = ml
        mq2 = params['mixed_fit']['ml']
    elif meson in ['phi_js']:
        mq1 = ml
        mq2 = params['mixed_fit']['ms']
    elif meson in ['phi_ru']:
        mq1 = ms
        mq2 = params['mixed_fit']['ml']
    elif meson in ['phi_rs']:
        mq1 = ms
        mq2 = params['mixed_fit']['ms']
    print 'reading meson two point', mq1, mq2
    mesp = params[tag][meson]['%s_%s' %(str(mq1),str(mq2))]
    # read data
    data = c51.fold(psql.data('dwhisq_corr_meson',mesp['meta_id']))
    return data
Example #6
0
def corrfit(psql, params, meson):
    mq = params['a13_fit']['ml']
    print 'fitting a13', mq
    tag = params['a13_fit']['ens']['tag']
    stream = params['a13_fit']['ens']['stream']
    Nbs = params['a13_fit']['nbs']
    Mbs = params['a13_fit']['mbs']
    mesp = params[tag][meson][mq]
    # read data
    SS = c51.fold(psql.data('dwhisq_corr_meson', mesp['meta_id']['SS']))
    PS = c51.fold(psql.data('dwhisq_corr_meson', mesp['meta_id']['PS']))
    T = len(SS[0])
    # plot effective mass / scaled correlator
    if params['flags']['plot_data']:
        # unfolded correlator data
        c51.scatter_plot(np.arange(len(SS[0])), c51.make_gvars(SS),
                         '%s ss folded' % (str(mq)))
        c51.scatter_plot(np.arange(len(PS[0])), c51.make_gvars(PS),
                         '%s ps folded' % (str(mq)))
        plt.show()
        # effective mass
        eff = c51.effective_plots(T)
        meff_ss = eff.effective_mass(c51.make_gvars(SS), 1, 'cosh')
        meff_ps = eff.effective_mass(c51.make_gvars(PS), 1, 'cosh')
        xlim = [2, 12]
        ylim = [0, 2]  #c51.find_yrange(meff_ss, xlim[0], xlim[1])
        c51.scatter_plot(np.arange(len(meff_ss)),
                         meff_ss,
                         '%s ss effective mass' % (str(mq)),
                         xlim=xlim,
                         ylim=ylim)
        ylim = c51.find_yrange(meff_ps, xlim[0], xlim[1])
        c51.scatter_plot(np.arange(len(meff_ps)),
                         meff_ps,
                         '%s ps effective mass' % (str(mq)),
                         xlim=xlim,
                         ylim=ylim)
        plt.show()
        # scaled correlator
        E0 = mesp['priors'][1]['E0'][0]
        scaled_ss = eff.scaled_correlator(c51.make_gvars(SS), E0, phase=1.0)
        scaled_ps = eff.scaled_correlator(c51.make_gvars(PS), E0, phase=1.0)
        ylim = c51.find_yrange(scaled_ss, xlim[0], xlim[1])
        c51.scatter_plot(np.arange(len(scaled_ss)),
                         scaled_ss,
                         '%s ss scaled correlator (take sqrt to get Z0_s)' %
                         (str(mq)),
                         xlim=xlim,
                         ylim=ylim)
        ylim = c51.find_yrange(scaled_ps, xlim[0], xlim[1])
        c51.scatter_plot(
            np.arange(len(scaled_ps)),
            scaled_ps,
            '%s ps scaled correlator (divide by Z0_s to get Z0_p)' % (str(mq)),
            xlim=xlim,
            ylim=ylim)
        plt.show()
    # concatenate data
    boot0 = np.concatenate((SS, PS), axis=1)
    # read priors
    prior = mesp['priors']
    # read trange
    trange = mesp['trange']
    # fit boot0
    boot0gv = c51.make_gvars(boot0)
    boot0p = c51.dict_of_tuple_to_gvar(prior)
    fitfcn = c51.fit_function(T, params['decay_ward_fit']['nstates'])
    boot0fit = c51.fitscript_v2(trange, T, boot0gv, boot0p,
                                fitfcn.twopt_fitfcn_ss_ps)
    if params['flags']['stability_plot']:
        c51.stability_plot(boot0fit, 'E0', '%s_%s' % (str(mq1), str(mq2)))
        plt.show()
    if params['flags']['tabulate']:
        tbl_print = collections.OrderedDict()
        tbl_print['tmin'] = boot0fit['tmin']
        tbl_print['tmax'] = boot0fit['tmax']
        tbl_print['E0'] = [
            boot0fit['pmean'][t]['E0'] for t in range(len(boot0fit['pmean']))
        ]
        tbl_print['dE0'] = [
            boot0fit['psdev'][t]['E0'] for t in range(len(boot0fit['pmean']))
        ]
        tbl_print['Z0_s'] = [
            boot0fit['pmean'][t]['Z0_s'] for t in range(len(boot0fit['pmean']))
        ]
        tbl_print['dZ0_s'] = [
            boot0fit['psdev'][t]['Z0_s'] for t in range(len(boot0fit['pmean']))
        ]
        tbl_print['Z0_p'] = [
            boot0fit['pmean'][t]['Z0_p'] for t in range(len(boot0fit['pmean']))
        ]
        tbl_print['dZ0_p'] = [
            boot0fit['psdev'][t]['Z0_p'] for t in range(len(boot0fit['pmean']))
        ]
        tbl_print['chi2/dof'] = np.array(boot0fit['chi2']) / np.array(
            boot0fit['dof'])
        tbl_print['logGBF'] = boot0fit['logGBF']
        print tabulate(tbl_print, headers='keys')
    # submit boot0 to db
    if params['flags']['write']:
        corr_lst = [mesp['meta_id']['SS'], mesp['meta_id']['PS']]
        fit_id = c51.select_fitid('meson', params)
        for t in range(len(boot0fit['tmin'])):
            init_id = psql.initid(boot0fit['p0'][t])
            prior_id = psql.priorid(boot0fit['prior'][t])
            tmin = boot0fit['tmin'][t]
            tmax = boot0fit['tmax'][t]
            result = c51.make_result(boot0fit, t)
            psql.submit_boot0('meson', corr_lst, fit_id, tmin, tmax, init_id,
                              prior_id, result, params['flags']['update'])
    if len(boot0fit['tmin']) != 1 or len(boot0fit['tmax']) != 1:
        print "sweeping over time range"
        print "skipping bootstrap"
        return 0
    else:
        pass
    if params['flags']['write']:
        bsresult = []
        psql.chkbsprior(tag, stream, Nbs, boot0fit['prior'][0])
        for g in tqdm.tqdm(range(Nbs)):
            # make bs gvar dataset
            n = g + 1
            bs_id, draw = psql.fetchonebs(nbs=n,
                                          Mbs=Mbs,
                                          ens=tag,
                                          stream=stream)
            bootn = boot0[draw]
            bootngv = c51.make_gvars(bootn)
            # read randomized priors
            bsprior_id, bsp = psql.bspriorid(tag, stream, g,
                                             boot0fit['prior'][0])
            bsp = c51.dict_of_tuple_to_gvar(bsp)
            # read initial guess
            init = c51.read_init(boot0fit,
                                 0)  #{"mres":boot0fit['pmean'][0]['mres']}
            #Fit
            bsfit = c51.fitscript_v2(trange, T, bootngv, bsp,
                                     fitfcn.twopt_fitfcn_ss_ps, init)
            tmin = bsfit['tmin'][0]
            tmax = bsfit['tmax'][0]
            boot0_id = psql.select_boot0('meson', corr_lst, fit_id, tmin, tmax,
                                         init_id, prior_id)
            bsinit_id = psql.initid(bsfit['p0'][0])
            result = c51.make_result(
                bsfit, 0
            )  #"""{"mres":%s, "chi2":%s, "dof":%s}""" %(bsfit['pmean'][t]['mres'],bsfit['chi2'][t],bsfit['dof'][t])
            psql.submit_bs('meson_bs', boot0_id, bs_id, Mbs, bsinit_id,
                           bsprior_id, result, params['flags']['update'])
    return 0
Example #7
0
def decay_bs(psql, params, meson):
    if meson == "pion":
        mq1 = params["decay_ward_fit"]["ml"]
        mq2 = mq1
    elif meson == "kaon":
        mq1 = params["decay_ward_fit"]["ml"]
        mq2 = params["decay_ward_fit"]["ms"]
    elif meson == "etas":
        mq1 = params["decay_ward_fit"]["ms"]
        mq2 = mq1
    print "fitting twopoint", mq1, mq2
    tag = params["decay_ward_fit"]["ens"]["tag"]
    stream = params["decay_ward_fit"]["ens"]["stream"]
    Nbs = params["decay_ward_fit"]["nbs"]
    Mbs = params["decay_ward_fit"]["mbs"]
    mesp = params[tag][meson]["%s_%s" % (str(mq1), str(mq2))]
    # read data
    SS = c51.fold(psql.data("dwhisq_corr_meson", mesp["meta_id"]["SS"]))
    PS = c51.fold(psql.data("dwhisq_corr_meson", mesp["meta_id"]["PS"]))
    T = len(SS[0])
    # plot effective mass / scaled correlator
    if params["flags"]["plot_data"]:
        # unfolded correlator data
        c51.scatter_plot(np.arange(len(SS[0])), c51.make_gvars(SS), "%s_%s ss folded" % (str(mq1), str(mq2)))
        c51.scatter_plot(np.arange(len(PS[0])), c51.make_gvars(PS), "%s_%s ps folded" % (str(mq1), str(mq2)))
        plt.show()
        # effective mass
        eff = c51.effective_plots(T)
        meff_ss = eff.effective_mass(c51.make_gvars(SS), 1, "cosh")
        meff_ps = eff.effective_mass(c51.make_gvars(PS), 1, "cosh")
        xlim = [3, len(meff_ss) / 2 - 2]
        ylim = c51.find_yrange(meff_ss, xlim[0], xlim[1])
        c51.scatter_plot(
            np.arange(len(meff_ss)), meff_ss, "%s_%s ss effective mass" % (str(mq1), str(mq2)), xlim=xlim, ylim=ylim
        )
        ylim = c51.find_yrange(meff_ps, xlim[0], xlim[1])
        c51.scatter_plot(
            np.arange(len(meff_ps)), meff_ps, "%s_%s ps effective mass" % (str(mq1), str(mq2)), xlim=xlim, ylim=ylim
        )
        plt.show()
        # scaled correlator
        E0 = mesp["priors"]["E0"][0]
        scaled_ss = eff.scaled_correlator(c51.make_gvars(SS), E0, phase=1.0)
        scaled_ps = eff.scaled_correlator(c51.make_gvars(PS), E0, phase=1.0)
        ylim = c51.find_yrange(scaled_ss, xlim[0], xlim[1])
        c51.scatter_plot(
            np.arange(len(scaled_ss)),
            scaled_ss,
            "%s_%s ss scaled correlator (take sqrt to get Z0_s)" % (str(mq1), str(mq2)),
            xlim=xlim,
            ylim=ylim,
        )
        ylim = c51.find_yrange(scaled_ps, xlim[0], xlim[1])
        c51.scatter_plot(
            np.arange(len(scaled_ps)),
            scaled_ps,
            "%s_%s ps scaled correlator (divide by Z0_s to get Z0_p)" % (str(mq1), str(mq2)),
            xlim=xlim,
            ylim=ylim,
        )
        plt.show()
    # concatenate data
    boot0 = np.concatenate((SS, PS), axis=1)
    # read priors
    prior = mesp["priors"]
    # read trange
    trange = mesp["trange"]
    # fit boot0
    boot0gv = c51.make_gvars(boot0)
    boot0p = c51.dict_of_tuple_to_gvar(prior)
    fitfcn = c51.fit_function(T, params["decay_ward_fit"]["nstates"])
    boot0fit = c51.fitscript_v2(trange, T, boot0gv, boot0p, fitfcn.twopt_fitfcn_ss_ps)
    if params["flags"]["stability_plot"]:
        c51.stability_plot(boot0fit, "E0", "%s_%s" % (str(mq1), str(mq2)))
        plt.show()
    if params["flags"]["tabulate"]:
        tbl_print = collections.OrderedDict()
        tbl_print["tmin"] = boot0fit["tmin"]
        tbl_print["tmax"] = boot0fit["tmax"]
        tbl_print["E0"] = [boot0fit["pmean"][t]["E0"] for t in range(len(boot0fit["pmean"]))]
        tbl_print["dE0"] = [boot0fit["psdev"][t]["E0"] for t in range(len(boot0fit["pmean"]))]
        tbl_print["Z0_s"] = [boot0fit["pmean"][t]["Z0_s"] for t in range(len(boot0fit["pmean"]))]
        tbl_print["dZ0_s"] = [boot0fit["psdev"][t]["Z0_s"] for t in range(len(boot0fit["pmean"]))]
        tbl_print["Z0_p"] = [boot0fit["pmean"][t]["Z0_p"] for t in range(len(boot0fit["pmean"]))]
        tbl_print["dZ0_p"] = [boot0fit["psdev"][t]["Z0_p"] for t in range(len(boot0fit["pmean"]))]
        tbl_print["chi2/dof"] = np.array(boot0fit["chi2"]) / np.array(boot0fit["dof"])
        tbl_print["logGBF"] = boot0fit["logGBF"]
        print tabulate(tbl_print, headers="keys")
    # submit boot0 to db
    if params["flags"]["write"]:
        corr_lst = [mesp["meta_id"]["SS"], mesp["meta_id"]["PS"]]
        fit_id = c51.select_fitid("meson", params)
        for t in range(len(boot0fit["tmin"])):
            init_id = psql.initid(boot0fit["p0"][t])
            prior_id = psql.priorid(boot0fit["prior"][t])
            tmin = boot0fit["tmin"][t]
            tmax = boot0fit["tmax"][t]
            result = c51.make_result(boot0fit, t)
            psql.submit_boot0(
                "meson", corr_lst, fit_id, tmin, tmax, init_id, prior_id, result, params["flags"]["update"]
            )
    if len(boot0fit["tmin"]) != 1 or len(boot0fit["tmax"]) != 1:
        print "sweeping over time range"
        print "skipping bootstrap"
        return 0
    else:
        pass
    if params["flags"]["write"]:
        bsresult = []
        psql.chkbsprior(tag, stream, Nbs, boot0fit["prior"][0])
        for g in tqdm.tqdm(range(Nbs)):
            # make bs gvar dataset
            n = g + 1
            bs_id, draw = psql.fetchonebs(nbs=n, Mbs=Mbs, ens=tag, stream=stream)
            bootn = boot0[draw]
            bootngv = c51.make_gvars(bootn)
            # read randomized priors
            bsprior_id, bsp = psql.bspriorid(tag, stream, g, boot0fit["prior"][0])
            bsp = c51.dict_of_tuple_to_gvar(bsp)
            # read initial guess
            init = c51.read_init(boot0fit, 0)  # {"mres":boot0fit['pmean'][0]['mres']}
            # Fit
            bsfit = c51.fitscript_v2(trange, T, bootngv, bsp, fitfcn.twopt_fitfcn_ss_ps, init)
            tmin = bsfit["tmin"][0]
            tmax = bsfit["tmax"][0]
            boot0_id = psql.select_boot0("meson", corr_lst, fit_id, tmin, tmax, init_id, prior_id)
            bsinit_id = psql.initid(bsfit["p0"][0])
            result = c51.make_result(
                bsfit, 0
            )  # """{"mres":%s, "chi2":%s, "dof":%s}""" %(bsfit['pmean'][t]['mres'],bsfit['chi2'][t],bsfit['dof'][t])
            psql.submit_bs("meson_bs", boot0_id, bs_id, Mbs, bsinit_id, bsprior_id, result, params["flags"]["update"])
    return 0