def plot_training_curve(self, xticks_step=5): evolution = pd.DataFrame({ 'Generation': self.log.select("gen"), 'Max Accuracy': self.log.select("max"), 'Average Accuracy': self.log.select("avg"), 'Min Accuracy': self.log.select("min") }) plt.title('Hyperparameter Optimisation') plt.plot(evolution['Generation'], evolution['Min Accuracy'], 'b', color='C1', label='Min') plt.plot(evolution['Generation'], evolution['Average Accuracy'], 'b', color='C2', label='Average') plt.plot(evolution['Generation'], evolution['Max Accuracy'], 'b', color='C3', label='Max') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.xlabel('Generation') plt.xticks( [x for x in range(0, self.number_of_generations + 1, xticks_step)]) plt.show()
def fit(self): self.X_embedded = TSNE(n_components=self.n_comp, perplexity=self.perplexity, verbose=self.verbose, init=self.init).fit_transform(self.data) self.df_embedded = pd.DataFrame( {f'{n+1}d': self.X_embedded[:, n] for n in range(self.n_comp)})
def get_centroids(self): centroid_df = pd.DataFrame(self.X_projected) centroid_df[self.category_label] = self.categories df_centroids_projected = get_centroids_from_categories( centroid_df, self.category_label) X_centroids_projected = df_centroids_projected.values centroids_categories = df_centroids_projected.index return X_centroids_projected, centroids_categories
def fit(self): self.pca.fit(self.X_scaled) self.X_projected = self.pca.transform(self.X_scaled) # Components table components_cols = ["F{}".format(n + 1) for n in range(self.n_comp)] self.components_table = pd.DataFrame(self.X_projected, index=self.categories, columns=components_cols) self.default_factorial_plan_nb = self.kaiser_criterion( pair_comp=True) / 2
def fit(self): """ """ self.pca.fit(self.X_scaled) self.X_projected = self.pca.transform(self.X_scaled) self.evr = self.pca.explained_variance_ratio_ # Components table components_cols = ["F{}".format(n + 1) for n in range(self.n_comp)] self.components_table = pd.DataFrame(self.X_projected, index=self.categories, columns=components_cols) self.default_factorial_plan_nb = int(self.kaiser_criterion() // 2)