Example #1
0
def baseline(dataset):
    audio, _, _, labels = load_data(dataset, 'audio', 'frame', verbose=True)

    X = flatten_data(audio, image=False)
    y = labels[:, 0]

    print("--" * 20)
    print("processed data shape", X.shape)
    print("processed label shape", y.shape)
    print("--" * 20)

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.33,
                                                        random_state=42)

    assert X_train.shape[1] == X_test.shape[1]

    test_AE = Autoencoder(dataset, 'audio', X_train.shape[1])
    test_AE.build_model()
    test_AE.train_model(X_train)

    X_encoded_train = test_AE.transform(X_train)
    X_encoded_test = test_AE.transform(X_test)

    test_SVM = LinearSVM('%s_baseline_%s' % (dataset, 'audio'))
    test_SVM.train(X_encoded_train, y_train)
    test_SVM.test(X_encoded_test, y_test)
Example #2
0
def bimodal_fusion(dataset):
    # concat_data_audio_1, concat_data_audio_2, labels = load_data(dataset, 'audio', 'concat', verbose=True)
    concat_data_mfcc_1, concat_data_mfcc_2, labels = load_data(dataset,
                                                               'mfcc',
                                                               'concat',
                                                               verbose=True)

    # X = np.vstack((concat_data_audio_1, concat_data_audio_2))
    X = np.vstack((concat_data_mfcc_1, concat_data_mfcc_2))
    y = np.hstack((labels[:, 0], labels[:, 0]))

    print("--" * 20)
    print("processed data shape", X.shape)
    print("processed label shape", y.shape)
    print("--" * 20)

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.33,
                                                        random_state=42)

    assert X_train.shape[1] == X_test.shape[1]

    test_AE = Autoencoder(dataset, 'concat_audio', X_train.shape[1])
    test_AE.build_model()
    test_AE.train_model(X_train)

    X_encoded_train = test_AE.transform(X_train)
    X_encoded_test = test_AE.transform(X_test)

    test_SVM = LinearSVM('%s_baseline_%s' % (dataset, 'concat_audio'))
    test_SVM.train(X_encoded_train, y_train)
    test_SVM.test(X_encoded_test, y_test)
    def mnist_test(self):
        from keras.datasets import mnist
        print("running autoencoders on MNIST data")
        (X_train, _), (X_test, _) = mnist.load_data()
        
        assert X_train.shape[1:] == X_test.shape[1:]

        X_train = flatten_data(X_train)
        X_test = flatten_data(X_test)

        assert X_train.shape == X_test.shape 

        mnist_ae = Autoencoder('12','12', X_train.shape[1])
        mnist_ae.build_model()
        mnist_ae.train_model(X_train, X_test)
        mnist_ae.vis_model(X_test)