Example #1
0
 def do_table_results(self, parameter_name, parameter_values, scores):
     rows = [['parameter_value_' + parameter_name, 'score']]
     x = PrettyTable()
     x.field_names = ['parameter_value_' + parameter_name, 'score']
     for index, parameter_value in enumerate(parameter_values):
         rows.append([parameter_value, scores[index]])
         x.add_row([parameter_value, scores[index]])
     if self.output_path is not None:
         save_csv(
             self.output_path + '/table_scores_parameter_' + parameter_name,
             rows)
     print(x)
Example #2
0
def class_frequencies_separate(config, output_path, values, labels, output_labels, visualize, dataframe, verbose):
    unique, counts = np.unique(output_labels, return_counts=True)
    rows = [['class', 'predicted_samples_distribution']]
    x = PrettyTable()
    x.field_names = ['class', 'predicted_samples_distribution']
    for index, _class in enumerate(unique):
        number_samples = counts[index]
        rows.append([_class, number_samples])
        x.add_row([_class, number_samples])
    if output_path is not None:
        save_csv(output_path + '/samples_distribution', rows)
    print(x)
Example #3
0
def show_metrics_table(config, output_path, values, labels, output_labels, visualize, dataframe, verbose):
    rows = [[''] + config['metrics']]
    x = PrettyTable()
    x.field_names = [''] + config['metrics']
    scores = []
    for metric in config['metrics']:
        scores.append(run_evaluation_metric(metric, values, labels, output_labels))
    rows.append(['result'] + scores)
    x.add_row(['result'] + scores)
    if output_path is not None:
        save_csv(output_path + '/table_scores', rows)
    print(x)
Example #4
0
def class_frequencies(config, output_path, values, labels, output_labels, visualize, dataframe, verbose):
    unique1, counts1 = np.unique(labels, return_counts=True)
    #counts1, unique1 = zip(*sorted(zip(counts1, unique1), reverse=True)) -> show sorted
    unique2, counts2 = np.unique(output_labels, return_counts=True)

    rows = [['class', 'original_samples_distribution', 'predicted_samples_distribution']]
    x = PrettyTable()
    x.field_names = ['class', 'original_samples_distribution', 'predicted_samples_distribution']
    for index, _class in enumerate(unique1):
        number_samples1 = counts1[index]
        number_samples2 = counts2[np.where(unique2 == _class)[0]][0]
        rows.append([_class, number_samples1, number_samples2])
        x.add_row([_class, number_samples1, number_samples2])
    if output_path is not None:
        save_csv(output_path + '/samples_distribution', rows)
    print(x)