Example #1
0
def do_train(dataset=None,
             network=None,
             load_checkpoint_path="",
             save_checkpoint_path="",
             epoch_num=1):
    """ do train """
    if load_checkpoint_path == "":
        raise ValueError(
            "Pretrain model missed, finetune task must load pretrain model!")
    steps_per_epoch = dataset.get_dataset_size()
    # optimizer
    optimizer = Adam(network.trainable_params(),
                     learning_rate=optimizer_cfg.learning_rate)
    # load checkpoint into network
    ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch,
                                   keep_checkpoint_max=1)
    ckpoint_cb = ModelCheckpoint(
        prefix="classifier",
        directory=None if save_checkpoint_path == "" else save_checkpoint_path,
        config=ckpt_config)
    param_dict = load_checkpoint(load_checkpoint_path)
    load_param_into_net(network, param_dict)

    update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32,
                                             scale_factor=2,
                                             scale_window=1000)
    netwithgrads = BertFinetuneCell(network,
                                    optimizer=optimizer,
                                    scale_update_cell=update_cell)
    model = Model(netwithgrads)
    callbacks = [
        TimeMonitor(dataset.get_dataset_size()),
        LossCallBack(dataset.get_dataset_size()), ckpoint_cb
    ]
    model.train(epoch_num, dataset, callbacks=callbacks)
Example #2
0
def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
    """ do train """
    if load_checkpoint_path == "":
        raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
    steps_per_epoch = dataset.get_dataset_size()
    # optimizer
    if optimizer_cfg.optimizer == 'AdamWeightDecay':
        lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
                                       end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
                                       warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
                                       decay_steps=steps_per_epoch * epoch_num,
                                       power=optimizer_cfg.AdamWeightDecay.power)
        params = network.trainable_params()
        decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
        other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
        group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
                        {'params': other_params, 'weight_decay': 0.0}]
        optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
    elif optimizer_cfg.optimizer == 'Lamb':
        lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
                                       end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
                                       warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
                                       decay_steps=steps_per_epoch * epoch_num,
                                       power=optimizer_cfg.Lamb.power)
        optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
    elif optimizer_cfg.optimizer == 'Momentum':
        optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
                             momentum=optimizer_cfg.Momentum.momentum)
    else:
        raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")

    # load checkpoint into network
    ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
    ckpoint_cb = ModelCheckpoint(prefix="ner",
                                 directory=None if save_checkpoint_path == "" else save_checkpoint_path,
                                 config=ckpt_config)
    param_dict = load_checkpoint(load_checkpoint_path)
    load_param_into_net(network, param_dict)

    update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
    netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
    model = Model(netwithgrads)
    callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
    train_begin = time.time()
    model.train(epoch_num, dataset, callbacks=callbacks)
    train_end = time.time()
    print("latency: {:.6f} s".format(train_end - train_begin))
Example #3
0
def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path=""):
    """ do train """
    if load_checkpoint_path == "":
        raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
    steps_per_epoch = dataset.get_dataset_size()
    epoch_num = dataset.get_repeat_count()
    # optimizer
    if optimizer_cfg.optimizer == 'AdamWeightDecayDynamicLR':
        optimizer = AdamWeightDecayDynamicLR(network.trainable_params(),
                                             decay_steps=steps_per_epoch * epoch_num,
                                             learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.learning_rate,
                                             end_learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.end_learning_rate,
                                             power=optimizer_cfg.AdamWeightDecayDynamicLR.power,
                                             warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
                                             weight_decay=optimizer_cfg.AdamWeightDecayDynamicLR.weight_decay,
                                             eps=optimizer_cfg.AdamWeightDecayDynamicLR.eps)
    elif optimizer_cfg.optimizer == 'Lamb':
        optimizer = Lamb(network.trainable_params(), decay_steps=steps_per_epoch * epoch_num,
                         start_learning_rate=optimizer_cfg.Lamb.start_learning_rate,
                         end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
                         power=optimizer_cfg.Lamb.power, weight_decay=optimizer_cfg.Lamb.weight_decay,
                         warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
                         decay_filter=optimizer_cfg.Lamb.decay_filter)
    elif optimizer_cfg.optimizer == 'Momentum':
        optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
                             momentum=optimizer_cfg.Momentum.momentum)
    else:
        raise Exception("Optimizer not supported. support: [AdamWeightDecayDynamicLR, Lamb, Momentum]")

    # load checkpoint into network
    ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
    ckpoint_cb = ModelCheckpoint(prefix="classifier", directory=save_checkpoint_path, config=ckpt_config)
    param_dict = load_checkpoint(load_checkpoint_path)
    load_param_into_net(network, param_dict)

    update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
    netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
    model = Model(netwithgrads)
    callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(), ckpoint_cb]
    model.train(epoch_num, dataset, callbacks=callbacks)
Example #4
0
def train():
    '''
    finetune function
    '''
    # BertCLS train for classification
    # BertNER train for sequence labeling

    if cfg.task == 'NER':
        tag_to_index = None
        if cfg.use_crf:
            tag_to_index = json.loads(open(cfg.label2id_file).read())
            print(tag_to_index)
            max_val = len(tag_to_index)
            tag_to_index["<START>"] = max_val
            tag_to_index["<STOP>"] = max_val + 1
            number_labels = len(tag_to_index)
        else:
            number_labels = cfg.num_labels

        netwithloss = BertNER(bert_net_cfg,
                              cfg.batch_size,
                              True,
                              num_labels=number_labels,
                              use_crf=cfg.use_crf,
                              tag_to_index=tag_to_index,
                              dropout_prob=0.1)
    elif cfg.task == 'Classification':
        netwithloss = BertCLS(bert_net_cfg,
                              True,
                              num_labels=cfg.num_labels,
                              dropout_prob=0.1,
                              assessment_method=cfg.assessment_method)
    else:
        raise Exception("task error, NER or Classification is supported.")

    dataset = get_dataset(data_file=cfg.data_file, batch_size=cfg.batch_size)
    steps_per_epoch = dataset.get_dataset_size()
    print('steps_per_epoch:', steps_per_epoch)

    # optimizer
    steps_per_epoch = dataset.get_dataset_size()
    if cfg.optimizer == 'AdamWeightDecay':
        lr_schedule = BertLearningRate(
            learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
            end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
            warmup_steps=int(steps_per_epoch * cfg.epoch_num * 0.1),
            decay_steps=steps_per_epoch * cfg.epoch_num,
            power=optimizer_cfg.AdamWeightDecay.power)
        params = netwithloss.trainable_params()
        decay_params = list(
            filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
        other_params = list(
            filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x),
                   params))
        group_params = [{
            'params':
            decay_params,
            'weight_decay':
            optimizer_cfg.AdamWeightDecay.weight_decay
        }, {
            'params': other_params,
            'weight_decay': 0.0
        }]
        optimizer = AdamWeightDecay(group_params,
                                    lr_schedule,
                                    eps=optimizer_cfg.AdamWeightDecay.eps)
    elif cfg.optimizer == 'Lamb':
        lr_schedule = BertLearningRate(
            learning_rate=optimizer_cfg.Lamb.learning_rate,
            end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
            warmup_steps=int(steps_per_epoch * cfg.epoch_num * 0.1),
            decay_steps=steps_per_epoch * cfg.epoch_num,
            power=optimizer_cfg.Lamb.power)
        optimizer = Lamb(netwithloss.trainable_params(),
                         learning_rate=lr_schedule)
    elif cfg.optimizer == 'Momentum':
        optimizer = Momentum(
            netwithloss.trainable_params(),
            learning_rate=optimizer_cfg.Momentum.learning_rate,
            momentum=optimizer_cfg.Momentum.momentum)
    else:
        raise Exception("Optimizer not supported.")

    # load checkpoint into network
    ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch,
                                   keep_checkpoint_max=1)
    ckpoint_cb = ModelCheckpoint(prefix=cfg.ckpt_prefix,
                                 directory=cfg.ckpt_dir,
                                 config=ckpt_config)
    param_dict = load_checkpoint(cfg.pre_training_ckpt)
    load_param_into_net(netwithloss, param_dict)

    update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32,
                                             scale_factor=2,
                                             scale_window=1000)
    netwithgrads = BertFinetuneCell(netwithloss,
                                    optimizer=optimizer,
                                    scale_update_cell=update_cell)
    model = Model(netwithgrads)
    callbacks = [
        TimeMonitor(dataset.get_dataset_size()),
        LossCallBack(dataset.get_dataset_size()), ckpoint_cb
    ]
    model.train(cfg.epoch_num,
                dataset,
                callbacks=callbacks,
                dataset_sink_mode=True)