eps = args.eps rep = args.rep seed = args.seed if seed is not None: np.random.seed(seed) print(experiment_name) print('n={}, k={}, eps={}, rep={}, seed={}'.format(n,k,eps,rep,seed)) conf = OrderedDict() conf['n']=n conf['eps'] = eps conf['rep']=rep conf['seed'] =seed modes = ['ind', 'uni', 'fdiff', 'fmax', 'fsum'] W_name = ['adult', 'age1', 'age2', 'age3'] W_lst = [census.__adult(), census.__age1(), census.__age2(), census.__age3()] c = np.random.choice(len(W_lst)) Ws = [W_lst[c]] Wn = [W_name[c]] res = error_calc(Ws, Ws, n, 1/k*eps, modes, rep) analysis = pd.DataFrame() result = pd.DataFrame.from_dict(res, orient='index') result = result.set_index(result.index+'_1') results = result out_dict = dict() out_dict['res_1'] = res res_prev = res for j in range(2,k+1): outs = [] index =[]
conf['k'] = k conf['eps'] = eps conf['rep'] = rep conf['seed'] = seed conf['t'] = t modes = [ 'ind', 'iden', 'uni', 'fdiff', 'fmax', 'fsum', 'buc_eq', 'buc_con', 'buc_qeq', 'buc_qsd' ] W_name = np.array([ 'adult', 'age1', 'age2', 'age3', 'Total', 'Total', 'Identity', 'Prefix', 'Prefix' ]) W_lst = np.array([ census.__adult(), census.__age1(), census.__age2(), census.__age3(), workload.Total(n), workload.Total(n), workload.Identity(n), workload.Prefix(n), workload.Prefix(n) ]) A_lst = strategy_comp(W_lst, n, rep) results = [] names = [] total_errors = pd.DataFrame() mean_ratio_errors = pd.DataFrame() max_ratio_errors = pd.DataFrame() min_ratio_errors = pd.DataFrame()
seed = args.seed t = args.t if seed is not None: np.random.seed(seed) print(experiment_name) print('n={}, k={}, eps={}, rep={}, seed={}, t={}'.format(n,k,eps,rep,seed,t)) conf = OrderedDict() conf['n']=n conf['k']=k conf['eps'] = eps conf['rep']=rep conf['seed'] =seed conf['t'] = t modes = ['ind', 'iden', 'uni', 'fdiff', 'fmax', 'fsum', 'buc_eq', 'buc_con', 'buc_qeq', 'buc_qsd'] W_name = np.array(['adult', 'age1', 'age2', 'age3', 'Total', 'Identity']) W_lst = np.array([census.__adult(), census.__age1(), census.__age2(), census.__age3(), workload.Total(n), workload.Identity(n)]) A_lst = strategy_comp(W_lst, n, rep) results = [] names = [] total_errors = pd.DataFrame() mean_ratio_errors = pd.DataFrame() max_ratio_errors = pd.DataFrame() min_ratio_errors = pd.DataFrame() max_distances = pd.DataFrame() min_distances = pd.DataFrame() gini_coefficients = pd.DataFrame() mean_idenratio_errors = pd.DataFrame() max_idenratio_errors = pd.DataFrame() min_idenratio_errors = pd.DataFrame() iden_gini_coefficients = pd.DataFrame() for i in range(t):