Example #1
0
def fwfm_query_config(dataset_id: str, epochs: int, data_processor: DataProcessor) -> Tuple[
    TrainConfig, EvalConfig]:
    if not data_processor:
        data_processor = ConcatDataProcessor()
    train_config = TrainConfig(
        dataset_id=dataset_id,
        data_processor=data_processor,
        model=fm.FwFMQuery,
        epochs=epochs,
        verbose=2,
    )
    eval_config = EvalConfig(
        dataset_id=dataset_id,
        model_name='fwfm_query',
        verbose=0,
    )
    return train_config, eval_config
Example #2
0
def nrmf_simple_all_config(dataset_id: str, epochs: int, data_processor) -> Tuple[
    TrainConfig, EvalConfig]:
    if not data_processor:
        data_processor = ConcatDataProcessor()
    train_config = TrainConfig(
        dataset_id=dataset_id,
        data_processor=data_processor,
        model=nrmf.NRMFSimpleAll,
        epochs=epochs,
        verbose=2,
    )
    eval_config = EvalConfig(
        dataset_id=dataset_id,
        model_name='nrmf_simple_all',
        verbose=0,
    )
    return train_config, eval_config
Example #3
0
def ebr_config(dataset_id: str, epochs: int, data_processor: DataProcessor) -> Tuple[
    TrainConfig, EvalConfig]:
    if not data_processor:
        data_processor = ConcatDataProcessor()
    train_config = TrainConfig(
        dataset_id=dataset_id,
        data_processor=data_processor,
        model=representation.EBR,
        epochs=epochs,
        verbose=2,
    )
    eval_config = EvalConfig(
        dataset_id=dataset_id,
        model_name='ebr',
        verbose=0,
    )
    return train_config, eval_config
Example #4
0
def naive_config(dataset_id: str, epochs: int, data_processor: DataProcessor) -> Tuple[
    TrainConfig, EvalConfig]:
    if not data_processor:
        data_processor = ConcatDataProcessor()
    train_config = TrainConfig(
        dataset_id=dataset_id,
        data_processor=data_processor,
        model=naive.Naive,
        epochs=epochs,
        verbose=2,
    )
    eval_config = EvalConfig(
        dataset_id=dataset_id,
        model_name='naive',
        verbose=0,
    )
    return train_config, eval_config