Example #1
0
def build_top_ensemble_score_json(old_json_path,
                                  new_json_path,
                                  threshold=None,
                                  top=None):
    print("Loading ensemble data from:")
    print(old_json_path)
    ensemble_data_list = json.load(open(old_json_path))

    if config.get_class() == "A":
        ensemble_data_list.sort(key=lambda x: -x["score"]["1"]["f1"])
    else:
        ensemble_data_list.sort(key=lambda x: -x["avrg_score"]["f1"])

    new_ensemble_data_list = []
    for ensemble_data in ensemble_data_list:
        if top is not None and len(new_ensemble_data_list) >= top:
            break
        if config.get_class() == "A":
            if threshold is not None and ensemble_data["score"]["1"][
                    "f1"] < threshold:
                break
            new_ensemble_data_list.append(ensemble_data)
        else:
            if threshold is not None and ensemble_data["avrg_score"][
                    "f1"] < threshold:
                break
            new_ensemble_data_list.append(ensemble_data)

    json.dump(new_ensemble_data_list, open(new_json_path, "w"), indent=4)
    print("New ensemble data built at:")
    print(new_json_path)
Example #2
0
def get_ensemble_path_list_from_score_json(json_path,
                                           threshold=None,
                                           top=None):
    ensemble_data_list = json.load(open(json_path))
    ensemble_file_path_list = []
    for ensemble_data in ensemble_data_list:
        if top is not None and len(ensemble_file_path_list) >= top:
            break
        if config.get_class() == "A":
            class_1_score = ensemble_data["score"]["1"]["f1"]
            if threshold is not None and class_1_score < threshold:
                continue
            print("Ensemble on %s" % ensemble_data["name"])
            print("--" * 30)
            print("Class \"1\" score: ", end="")
            __print_score_helper(ensemble_data["score"]["1"])

            print("Ensemble file loaded from:")
            print(ensemble_data["ensemble_path"])
            ensemble_file_path_list.append(ensemble_data["ensemble_path"])
        elif config.get_class() == "B":
            f1_macro_score = ensemble_data["avrg_score"]["f1"]
            if threshold is not None and f1_macro_score < threshold:
                continue
            print("Ensemble on %s" % ensemble_data["name"])
            print("--" * 30)
            print("Average score: ", end="")
            __print_score_helper(ensemble_data["avrg_score"])

            print("Ensemble file loaded from:")
            print(ensemble_data["ensemble_path"])
            ensemble_file_path_list.append(ensemble_data["ensemble_path"])
        print()
    return ensemble_file_path_list
def convert(excel_name, task="0"):
    if task == "0":
        excel_path = os.path.join(config.RESULT_EXCEL_PATH, "%s.xlsx" % excel_name)
        train_path = os.path.join(config.ENSEMBLE_PATH, "nn_ali_%s_%s.json" % (excel_name, config.get_class().lower()))
        test_path = os.path.join(config.ENSEMBLE_PATH,
                                 "nn_ali_test_%s_%s.json"% (excel_name, config.get_class().lower()))
        get_excel_data(excel_path, train_path, test_path)
    else:
        excel_path = os.path.join(config.RESULT_EXCEL_PATH, "%s.xlsx" % excel_name)
        valid_path = os.path.join(config.ENSEMBLE_PATH, "nn_ali_valid_%s_%s.json" % (excel_name, config.get_class().lower()))
        test_path = os.path.join(config.ENSEMBLE_PATH,
                                 "nn_ali_test_%s_%s.json" % (excel_name, config.get_class().lower()))
        get_valid_and_test_data(excel_path, valid_path, test_path)
def get_excel_data(path, train_out_path, test_out_path=""):
    book = xlrd.open_workbook(path)
    train_output_dict = dict()
    test_output_dict = dict()
    for idx, table in enumerate(book.sheets()):
        if idx < 2:
            output_dict = train_output_dict
        else:
            output_dict = test_output_dict
        for idx in range(1, table.nrows):
            line_data = table.row_values(idx)

            clsid = str(int(line_data[0]))

            if config.get_class() == "A":
                prob_0 = line_data[1]
                prob_1 = line_data[2]

                if prob_0 > prob_1:
                    output_dict[clsid] = {"0": 1}
                else:
                    output_dict[clsid] = {"1": 1}
            else:
                raise NotImplementedError("分类器尚未实现。")

    json.dump(train_output_dict, open(train_out_path, "w"))
    print("Train excel data converted to:")
    print(train_out_path)

    if len(test_out_path) > 0:
        json.dump(test_output_dict, open(test_out_path, "w"))
        print("Test excel data converted to:")
        print(test_out_path)
Example #5
0
def get_cm_eval(matrix: ConfusionMatrix):
    if config.get_class() == "A":
        # as for the task A, because it only evaluate on class "1",
        # so instead of using average f1, we use f1 of class "1".
        return matrix.get_prf("1")
    else:
        return matrix.get_average_prf()
Example #6
0
def main(task, is_test=False):
    if task == "0":  # 取 top_5 的结果,然后 ensemble (所有的数据)
        build_top_ensemble_score_json(OUTPUT_LIST_JSON, TOP_LIST_JSON, top=5)
        path_list = get_ensemble_path_list_from_score_json(TOP_LIST_JSON,
                                                           top=5)
        make_ensemble_from_file(path_list, FINAL_PATH)
        make_result_from_ensemble(FINAL_PATH, RESULT_PATH)

        if not is_test:
            from src import evaluation
            cm = evaluation.Evaluation(config.GOLDEN_TRAIN_LABEL_FILE,
                                       RESULT_PATH, config.get_label_list())
            cm.print_out()
    elif task == "1":  # 仅生成阿里的训练结果的数据,然后进行验证
        if not is_test:
            make_partly_result_from_ensemble(NN_VALID_PATH,
                                             config.GOLDEN_TRAIN_LABEL_FILE,
                                             RESULT_PATH, PARTLY_GOLDEN)
        else:
            make_partly_result_from_ensemble(NN_TEST_PATH,
                                             config.GOLDEN_TEST_LABEL_FILE,
                                             RESULT_PATH, PARTLY_GOLDEN)
        from src import evaluation
        cm = evaluation.Evaluation(PARTLY_GOLDEN, RESULT_PATH,
                                   config.get_label_list())
        cm.print_out()
    elif task == "2":  # 飞翔的建议:因为阿里的效果较好,则1分类全部使用来自阿里的效果,阿里分类为0 的,则使用剩下来的
        if config.get_class() != 'A':
            raise Exception("不允许使用 B 分类")
        final_result = dict()

        ali_result = json.load(open(NN_TEST_PATH))
        for key, value in ali_result.items():
            if len(value) == 1:
                clsid = str(list(value.keys())[0])
                if clsid == "1":
                    final_result[key] = {clsid: 1}

        print(len(final_result))

        build_top_ensemble_score_json(OUTPUT_LIST_JSON, TOP_LIST_JSON, top=5)
        path_list = get_ensemble_path_list_from_score_json(TOP_LIST_JSON,
                                                           top=5)
        make_ensemble_from_file(path_list, FINAL_PATH)

        top_five_result = json.load(open(FINAL_PATH))

        for key, value in top_five_result.items():
            if key not in final_result:
                final_result[key] = value

        json.dump(final_result, open(FINAL_PATH, "w"))
        make_result_from_ensemble(FINAL_PATH, RESULT_PATH)

        if not is_test:
            from src import evaluation
            cm = evaluation.Evaluation(config.GOLDEN_TRAIN_LABEL_FILE,
                                       RESULT_PATH, config.get_label_list())
            cm.print_out()
    elif task == "3":  #飞翔的建议2
        if config.get_class() != 'A':
            raise Exception("不允许使用 B 分类")
        final_result = dict()

        ali_result = json.load(open(NN_TEST_PATH))
        for key, value in ali_result.items():
            if len(value) == 1:
                clsid = str(list(value.keys())[0])
                if clsid == "1":
                    final_result[key] = {clsid: 1}

        print(len(final_result))

        build_top_ensemble_score_json(OUTPUT_LIST_JSON, TOP_LIST_JSON, top=4)
        path_list = get_ensemble_path_list_from_score_json(TOP_LIST_JSON,
                                                           top=4)
        make_ensemble_from_file(path_list, FINAL_PATH)

        top_four_result = json.load(open(FINAL_PATH))

        for key, value in top_four_result.items():
            if key not in final_result:
                value.setdefault("0", 0)
                value["0"] += 1
                final_result[key] = value

        json.dump(final_result, open(FINAL_PATH, "w"))
        make_result_from_ensemble(FINAL_PATH, RESULT_PATH)

        if not is_test:
            from src import evaluation
            cm = evaluation.Evaluation(config.GOLDEN_TRAIN_LABEL_FILE,
                                       RESULT_PATH, config.get_label_list())
            cm.print_out()
    elif task == "4":
        # 使用 TOP4 和 NN_ALI 的结果

        build_top_ensemble_score_json(OUTPUT_LIST_JSON, TOP_LIST_JSON, top=4)
        path_list = get_ensemble_path_list_from_score_json(TOP_LIST_JSON,
                                                           top=4)

        path_list += [NN_TEST_PATH]
        make_ensemble_from_file(path_list, FINAL_PATH)
        make_result_from_ensemble(FINAL_PATH, RESULT_PATH)

    elif task == "5":
        # for Task B, 直接 4分类的算法
        print(OUTPUT_LIST_JSON)
        build_top_ensemble_score_json(OUTPUT_LIST_JSON, TOP_LIST_JSON, top=3)
        path_list = get_ensemble_path_list_from_score_json(TOP_LIST_JSON)
        print(path_list)
        _ = input("请按 Enter或Return 继续")
        make_ensemble_from_file(path_list, FINAL_PATH)

        make_result_from_ensemble(FINAL_PATH, RESULT_PATH)

        if not is_test:
            from src import evaluation
            cm = evaluation.Evaluation(config.GOLDEN_TRAIN_LABEL_FILE,
                                       RESULT_PATH, config.get_label_list())
            cm.print_out()

    elif task == "6" or task == "7":
        import random

        def select_iteration(ensemble_score_class_list):
            def make_selection(id_list):
                selection_list = []

                for idx, id in enumerate(id_list):
                    sel_ensemble = ensemble_score_class_list[idx][id]
                    selection_list.append({
                        "path":
                        sel_ensemble["ensemble_path"],
                        "name":
                        sel_ensemble["name"],
                        "f1":
                        sel_ensemble["score"]["1"]["f1"]
                    })
                return selection_list

            selection_id_list = [0] * len(ensemble_score_class_list)
            while selection_id_list[0] < len(ensemble_score_class_list[0]):
                yield make_selection(selection_id_list)
                id = len(selection_id_list) - 1
                selection_id_list[id] += 1

                while id >= 1:
                    if selection_id_list[id] >= len(
                            ensemble_score_class_list[id]):
                        selection_id_list[id - 1] += 1
                        selection_id_list[id] = 0
                        id -= 1
                    else:
                        break

        def select_ui(ensemble_score_class_list):
            selection_list = []
            for idx, ensemble_score_data in enumerate(
                    ensemble_score_class_list):
                print("Choose algorithm for label \"%d\"" % idx)
                print("==" * 30)
                print("\n".join([
                    "%d: %s, f1 = %.2f%%" %
                    (i, algorithm["name"], algorithm["score"]["1"]["f1"] * 100)
                    for i, algorithm in enumerate(ensemble_score_data)
                ]))
                sel = input("Which one do you want?")
                try:
                    sel_idx = int(sel)
                    sel_ensemble = ensemble_score_data[sel_idx]

                    print("Algorithm %d: \'%s\' selected for label \'%s\'." %
                          (sel_idx, sel_ensemble["name"], idx))

                    selection_list.append({
                        "path":
                        sel_ensemble["ensemble_path"],
                        "name":
                        sel_ensemble["name"],
                        "f1":
                        sel_ensemble["score"]["1"]["f1"]
                    })
                    print("")
                except Exception as e:
                    raise e
            return selection_list

        def list_selection(selection_list):
            print("Using " + ", ".join([
                sel["name"] + " for label \'%d\'" % idx
                for idx, sel in enumerate(selection_list)
            ]))

        def run(selection_list):
            handle_replica = 0
            result_dict = dict()
            for idx, selection in enumerate(selection_list):
                dat = json.load(open(selection["path"]))
                dat = sorted(dat.items(), key=lambda x: int(x[0]))

                for dat_idx, dic in dat:
                    result_dict.setdefault(dat_idx, dict())
                    result_dict[dat_idx][idx] = dic["1"]

            for key in result_dict.keys():
                result_dict[key] = sorted(result_dict[key].items(),
                                          key=lambda x: -x[1])
            result_list = sorted(result_dict.items(), key=lambda x: int(x[0]))

            ensemble_result = []
            for idx, data in result_list:
                max_f1 = data[0][1]
                max_count = [item[1] for item in data].count(max_f1)
                if max_count > 1:
                    if handle_replica == 0:
                        ret = input(
                            "How to handle replica label? Do you want to use random? (y/s)"
                        ).lower().strip()
                        if ret == "y":
                            handle_replica = 1
                        elif ret == "n":
                            handle_replica = 2
                        else:
                            raise ValueError("You must enter y or n.")

                    if handle_replica == 1:
                        ensemble_result.append(data[random.randint(
                            0, max_count - 1)][0])
                    elif handle_replica == 2:
                        ensemble_result.append(data[0][0])
                else:
                    ensemble_result.append(data[0][0])

            # print(result_list)
            print(ensemble_result)
            with open(RESULT_PATH, 'w') as fout:
                fout.write('\n'.join(map(str, ensemble_result)))

            from src import evaluation
            if not is_test:
                cm = evaluation.Evaluation(config.GOLDEN_TRAIN_LABEL_FILE,
                                           RESULT_PATH,
                                           config.get_all_label_list())
            else:
                cm = evaluation.Evaluation(config.GOLDEN_TEST_LABEL_FILE,
                                           RESULT_PATH,
                                           config.get_all_label_list())
            p, r, f1 = cm.get_average_prf()
            return f1, cm

        def make_my_path(id):
            return config.make_ensemble_score_path(dspr="train_binary%d" % id,
                                                   unique=False)

        if task == "6":
            CLASS_PATH_LIST = list(map(make_my_path, list(range(4))))
            ensemble_score_class_list = list(
                map(json.load, map(open, CLASS_PATH_LIST)))

            if not is_test:
                max_f1 = 1E-99
                best_sel = None
                best_cm = None
                for selection_list in select_iteration(
                        ensemble_score_class_list):
                    f1, cm = run(selection_list)
                    if f1 > max_f1:
                        best_sel = selection_list
                        max_f1 = f1
                        best_cm = cm
                if best_sel is not None:
                    list_selection(best_sel)
                    best_cm.print_out()

            else:
                PATH_LIST = [
                    "/home/zhenghang/projects/python/SemEval2018_T3/multi_binary_1000/ensemble/ensemble.2018-04-20.test_sklearn_logreg_binary0.a23687fc-440b-11e8-98ce-d4ae52cf49b7.b.json",
                    "/home/zhenghang/projects/python/SemEval2018_T3/multi_binary_1000/ensemble/ensemble.2018-04-20.test_sklearn_logreg_binary1.e972d7f6-440b-11e8-98ce-d4ae52cf49b7.b.json",
                    "/home/zhenghang/projects/python/SemEval2018_T3/multi_binary_1000/ensemble/ensemble.2018-04-20.test_sklearn_logreg_binary2.34ae4930-440c-11e8-98ce-d4ae52cf49b7.b.json",
                    "/home/zhenghang/projects/python/SemEval2018_T3/multi_binary_1000/ensemble/ensemble.2018-04-20.test_liblinear_lr_binary3.7659b748-440c-11e8-98ce-d4ae52cf49b7.b.json"
                ]
                # selection_list=list(map(json.load, map(open, PATH_LIST)))
                selection_list = [{'path': path} for path in PATH_LIST]

                f1, cm = run(selection_list)
                # list_selection(selection_list)
                cm.print_out()
        elif task == "7":
            files = []
            for i in range(4):
                ret = os.popen(
                    "ls " +
                    os.path.join(config.ENSEMBLE_PATH, "*binary%d*" % i))
                cur_files = ret.read().strip().split('\n')
                files += cur_files
            # print(files)
            selection_list = [{
                "path": os.path.join(config.ENSEMBLE_PATH, item)
            } for item in files]
            print(selection_list)
            run(selection_list)

    elif task == "8":
        make_partly_result_from_ensemble
Example #7
0
    print(result_path)

    with open(target_golden_path, "w") as fout:
        for line in new_golden_data:
            fout.write(str(line))
            fout.write('\n')
    print("Part golden file saved to:")
    print(target_golden_path)


EXCEL_NAME = "6867"
OUTPUT_LIST_JSON = config.make_ensemble_score_path(dspr="test", unique=False)
TOP_LIST_JSON = config.make_ensemble_score_path(dspr="test_top", unique=False)
NN_PATH = os.path.join(
    config.ENSEMBLE_PATH,
    "nn_ali_%s_%s.json" % (EXCEL_NAME, config.get_class().lower()))
NN_VALID_PATH = os.path.join(
    config.ENSEMBLE_PATH,
    "nn_ali_valid_%s_%s.json" % (EXCEL_NAME, config.get_class().lower()))
NN_TEST_PATH = os.path.join(
    config.ENSEMBLE_PATH,
    "nn_ali_test_%s_%s.json" % (EXCEL_NAME, config.get_class().lower()))
PARTLY_GOLDEN = os.path.join(config.CWD, "golden.txt")
FINAL_PATH = os.path.join(config.ENSEMBLE_PATH, "all.json")
RESULT_PATH = os.path.join(config.RESULT_MYDIR, "ensemble_result.txt")


def main(task, is_test=False):
    if task == "0":  # 取 top_5 的结果,然后 ensemble (所有的数据)
        build_top_ensemble_score_json(OUTPUT_LIST_JSON, TOP_LIST_JSON, top=5)
        path_list = get_ensemble_path_list_from_score_json(TOP_LIST_JSON,