Example #1
0
    def __init__(self, sample_df, data_path, output_size=512, mask_img=True):
        """
        Constructor of the dataset.
        ----------
        INPUT
            |---- sample_df (pandas.DataFrame) the dataframe containing the
            |           samples' filenames, labels, (semi-labels and mask-filename).
            |---- data_path (str) the path to the data filenames specified in the sample_df
            |---- output_size (int) the size of the output squared image.
            |---- mask_img (bool) whether to mask image.
        """
        data.Dataset.__init__(self)
        self.sample_df = sample_df
        self.data_path = data_path

        self.transform = tf.Compose(
            tf.Grayscale(), tf.AutoContrast(cutoff=1),
            tf.RandomHorizontalFlip(p=0.5),
            tf.RandomScaling(scale_range=(0.8, 1.2)),
            tf.RandomRotation(degree_range=(-45, 45)),
            tf.ResizeMax(max_len=output_size), tf.PadToSquare(),
            tf.RandomCropResize((output_size, output_size),
                                scale=(0.4, 1.0),
                                ratio=(4. / 5., 5. / 4.)),
            tf.ColorDistorsion(s=0.5),
            tf.GaussianBlur(p=0.5, sigma=(0.1, 2.0)), tf.MinMaxNormalization(),
            tf.MaskImage(mask_img), tf.ToTorchTensor())
Example #2
0
 def __init__(self,
              sample_df,
              data_path,
              mask_img=True,
              output_size=512,
              data_augmentation=True):
     """
     Constructor of the dataset.
     ----------
     INPUT
         |---- sample_df (pandas.DataFrame) the dataframe containing the
         |           samples' filenames, labels, (semi-labels and mask-filename).
         |---- data_path (str) the path to the data filenames specified in the sample_df
         |---- mask_img (bool) whether to mask the image.
         |---- output_size (int) the size of the output squared image.
         |---- data_augmentation (bool) whether to perform data augmentation.
     """
     data.Dataset.__init__(self)
     self.sample_df = sample_df
     self.data_path = data_path
     if data_augmentation:
         self.transform = tf.Compose(tf.Grayscale(), \
                                     tf.AutoContrast(cutoff=1), \
                                     tf.RandomHorizontalFlip(p=0.5), \
                                     tf.RandomVerticalFlip(p=0.5), \
                                     tf.RandomBrightness(lower=0.8, upper=1.2), \
                                     tf.RandomScaling(scale_range=(0.8,1.2)), \
                                     tf.RandomRotation(degree_range=(-20,20)), \
                                     tf.ResizeMax(output_size), \
                                     tf.PadToSquare(), \
                                     tf.MinMaxNormalization(), \
                                     tf.MaskImage(mask_img), \
                                     tf.ToTorchTensor())
     else:
         self.transform = tf.Compose(tf.Grayscale(), \
                                     tf.AutoContrast(cutoff=1), \
                                     tf.ResizeMax(output_size), \
                                     tf.PadToSquare(), \
                                     tf.MinMaxNormalization(), \
                                     tf.MaskImage(mask_img), \
                                     tf.ToTorchTensor())
            color='limegreen',
            alpha=0.4)
    ax.set_title(part.title(), fontsize=12)
    ax.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))

fig.savefig(FIGURE_PATH + 'score_distribution.pdf',
            dpi=dpi,
            bbox_inches='tight')
plt.show()

#%%#############################################################################
#                         10 highest scores by body part                       #
################################################################################

img_transform = tf.Compose(tf.Grayscale(), tf.ResizeMax(max_len=512),
                           tf.PadToSquare(), tf.ToTorchTensor())
j = 1

for label, low_ad in zip([1, 1, 0, 0], [False, True, False, True]):
    fig, axs = plt.subplots(7,
                            10,
                            figsize=(20, 14),
                            gridspec_kw={
                                'hspace': 0.25,
                                'wspace': 0.0
                            })
    if transparent: fig.set_alpha(0.0)

    for ax_row, part in zip(axs, BodyPart_list):
        df_high = df[(df.body_part == part)
                     & (df.abnormal_XR == label)].sort_values(