def fitter_type4(self,i,j): if i<0 or j>(len(self.observations)+1) or i>j: raise Exception("fitting between {} and {} incompatible when number of acquisitions have been {}".format(i,j,len(self.observations))) curr_trajectory = defs.trajectory(3,self.observations[i:j]) res4 = estimate_individual_type(curr_trajectory,3) return res4,0.1
list_of_observations.append(curr_obs) if idx == 55: print("Adding changepoint") set_of_possible_new_types = set_of_types.copy() set_of_possible_new_types.remove(pre_type) post_type = random.sample(set_of_possible_new_types, 1) a.agents[tracking_agent_id].tp = post_type[0] print("set {} iter {} exper {} tp {}".format(lm, idx, j, i)) if a.terminal: print("Simulation ended") curr_time.append(idx) curr_traj = defs.trajectory(a.agents[tracking_agent_id].tp, list_of_observations) if idx > 56: cp_curr_traj = defs.cp_trajectory(pre_type, post_type, 25, list_of_observations) cp_traj_list.append(cp_curr_traj) traj_list.append(curr_traj) times.append(curr_time) times = np.array(times) # print(np.mean(times,axis=1)) tot_times.append(times) # print(np.mean(tot_times,axis=0)) import pickle import src.agents.adhoc_agent as sadhoc