def _test_percents(self, human_classified_pickle, language): 'This method returns ntuple containing (matches, false_positive, false_negative, unknown)' human_classified = HumanClassification(human_classified_pickle) human_classified.load() entry_count = len(human_classified.classification) true_positive = 0.0 true_negative = 0.0 matches = 0.0 false_positive = 0.0 false_negative = 0.0 unknown = 0.0 for entry_id in human_classified.classification: processed_entry = self.db.get_entry_by_id(entry_id) probability = self.classify(processed_entry.original_entry, language) if probability < self._low: if not human_classified.classification[entry_id]: matches += 1 true_negative += 1 else: false_negative += 1 elif probability >= self._high: if human_classified.classification[entry_id]: matches += 1 true_positive += 1 else: false_positive += 1 else: unknown += 1 return (matches, true_positive, true_negative, false_positive, false_negative, unknown, entry_count)
def run_tests(self, input_file, language): 'Method for running tests on input file and get time elapsed for classification of one entry' self.db.connect(user='******', database='meco', host='localhost', port=5432) tmp = HumanClassification(input_file) tmp.load() self._logger.info('Running tests...') tests = Tests() tests.set_test_len(len(tmp.classification)) tests.set_train_len(len(self.human.classification)) tests.set_train_positive_len(self.human.get_positively_classified_count(language)) tests.set_train_negative_len(self.human.get_negatively_classified_count(language)) self._logger.info('Calculating corelation...') tests.set_corelation(self._test_corelation(input_file, language)) self._logger.info('Calculating percentage of classification accuracy...') tests.set_percents(self._test_percents(input_file, language)) print tests
def _test_corelation(self, human_classified_pickle, language): 'This method prints corelation between user defined input in human_classified_pickle and automatic classification.' # # covariance # | # C(X,Y) E(XY) - E(X)E(Y) # corelation = ------------------ = ------------------------------------------- , a = E(XY), b = E(X), c = E(Y), d,= E(X^2), e = E(Y^2) # d(X)d(Y) sqrt(E(X^2) - E(X)^2) sqrt(E(Y^2) - E(Y)^2) # | # standard deviations # # X - automatically calculated probabilities # Y - human input probabilities # human_classified = HumanClassification(human_classified_pickle) human_classified.load() entry_count = len(human_classified.classification) a = 0.0 b = 0.0 c = 0.0 d = 0.0 e = 0.0 for entry_id in human_classified.classification: processed_entry = self.db.get_entry_by_id(entry_id) probability_auto = self.classify(processed_entry.original_entry, language) if human_classified.classification[entry_id]: probability_human = self.HUMAN_RATING_PROBABILITY else: probability_human = (1 - self.HUMAN_RATING_PROBABILITY) a += probability_human * probability_auto b += probability_auto c += probability_human d += probability_auto * probability_auto e += probability_human * probability_human # E() values a /= entry_count b /= entry_count c /= entry_count d /= entry_count e /= entry_count return (a - (b * c)) / (sqrt(d - (b * b)) * sqrt(e - (c * c)))
def run_tests(self, input_file, language): 'Method for running tests on input file and get time elapsed for classification of one entry' self.db.connect(user='******', database='meco', host='localhost', port=5432) tmp = HumanClassification(input_file) tmp.load() self._logger.info('Running tests...') tests = Tests() tests.set_test_len(len(tmp.classification)) tests.set_train_len(len(self.human.classification)) tests.set_train_positive_len( self.human.get_positively_classified_count(language)) tests.set_train_negative_len( self.human.get_negatively_classified_count(language)) self._logger.info('Calculating corelation...') tests.set_corelation(self._test_corelation(input_file, language)) self._logger.info( 'Calculating percentage of classification accuracy...') tests.set_percents(self._test_percents(input_file, language)) print tests
def __init__(self, low=0.5, high=0.5): # classification thresholds self._low = float(low) self._high = float(high) # add and setup logger self._logger = logging.getLogger() logging.basicConfig(level=logging.DEBUG) # db connection self.db = Connection() # load info about allready classified entries self._logger.info('Loading Allready classified entries...') self.human = HumanClassification( '/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/HumanClassification' ) self.human.load() # load database of words self._logger.info('Loading word dictionary...') self.word_dict = WordDictionary( '/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/WordDictionary' ) self.word_dict.load() # timer self._timer = timeit.Timer()
def human_classify(self, output_pickle, language): 'This method creates output_pickle file containing user defined classifications of entries. May be used for creating test data.' self.db.connect(user='******', database='meco', host='localhost', port=5432) new_human_classify = HumanClassification(output_pickle) new_human_classify.load() try: for entry in self.db.entries(language=language, entry_count=None, entry_offset=0): # when entry was allready processed skip if entry.id in new_human_classify.classification: continue print 'Original entry: \n"'+ entry.original_entry + '"\n automatic classification = ' + str(self.classify(entry.original_entry, language)) automatic_classification = self.classify(entry.original_entry, language) if automatic_classification < self._low: auto = 'n' continue # TODO: odstranit elif automatic_classification >= self._high: auto = 'y' else: auto = '?' answer = raw_input('Is this entry relevant? (y/n/?/END))['+ auto +']: ') if answer == 'y': new_human_classify.classification[entry.id] = True elif answer == 'n': new_human_classify.classification[entry.id] = False elif answer == 'END': break else: if automatic_classification < self._low: new_human_classify.classification[entry.id] = False elif automatic_classification >= self._high: new_human_classify.classification[entry.id] = True else: new_human_classify.classification[entry.id] = None print 'Cassified count = ' + str(len(new_human_classify.classification)) except KeyboardInterrupt: pass new_human_classify.store()
def __init__(self, low=0.5, high=0.5): # classification thresholds self._low = float(low) self._high = float(high) # add and setup logger self._logger = logging.getLogger() logging.basicConfig(level=logging.DEBUG) # db connection self.db = Connection() # load info about allready classified entries self._logger.info('Loading Allready classified entries...') self.human = HumanClassification('/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/HumanClassification') self.human.load() # load database of words self._logger.info('Loading word dictionary...') self.word_dict = WordDictionary('/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/WordDictionary') self.word_dict.load() # timer self._timer = timeit.Timer()
def human_classify(self, output_pickle, language): 'This method creates output_pickle file containing user defined classifications of entries. May be used for creating test data.' self.db.connect(user='******', database='meco', host='localhost', port=5432) new_human_classify = HumanClassification(output_pickle) new_human_classify.load() try: for entry in self.db.entries(language=language, entry_count=None, entry_offset=0): # when entry was allready processed skip if entry.id in new_human_classify.classification: continue print 'Original entry: \n"' + entry.original_entry + '"\n automatic classification = ' + str( self.classify(entry.original_entry, language)) automatic_classification = self.classify( entry.original_entry, language) if automatic_classification < self._low: auto = 'n' continue # TODO: odstranit elif automatic_classification >= self._high: auto = 'y' else: auto = '?' answer = raw_input('Is this entry relevant? (y/n/?/END))[' + auto + ']: ') if answer == 'y': new_human_classify.classification[entry.id] = True elif answer == 'n': new_human_classify.classification[entry.id] = False elif answer == 'END': break else: if automatic_classification < self._low: new_human_classify.classification[entry.id] = False elif automatic_classification >= self._high: new_human_classify.classification[entry.id] = True else: new_human_classify.classification[entry.id] = None print 'Cassified count = ' + str( len(new_human_classify.classification)) except KeyboardInterrupt: pass new_human_classify.store()
class Classifier: '''Class using for classification of tweets. Use classify() method for classification, train() method for training of bayesian filter.''' MAX_TOKEN_SIZE = 6 # defines word count in dictionary tuples HUMAN_RATING_PROBABILITY = 0.99 def __init__(self, low=0.5, high=0.5): # classification thresholds self._low = float(low) self._high = float(high) # add and setup logger self._logger = logging.getLogger() logging.basicConfig(level=logging.DEBUG) # db connection self.db = Connection() # load info about allready classified entries self._logger.info('Loading Allready classified entries...') self.human = HumanClassification('/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/HumanClassification') self.human.load() # load database of words self._logger.info('Loading word dictionary...') self.word_dict = WordDictionary('/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/WordDictionary') self.word_dict.load() # timer self._timer = timeit.Timer() def _add_classification(self, entry, classification): 'Add each token to word dictionary for futher classification.' language = entry.get_language() for i in xrange(1, self.MAX_TOKEN_SIZE + 1): # for each token add to word dictionary for token in entry.get_token(i): self.word_dict.words.setdefault(language, {}).setdefault(token, {'count':0, 'weight':0})['count'] += 1 if classification: self.word_dict.words[language][token]['weight'] += self.HUMAN_RATING_PROBABILITY else: self.word_dict.words[language][token]['weight'] += (1 - self.HUMAN_RATING_PROBABILITY) def _add_to_human_classification(self, entry, classification): 'Adds classified text to human classification. Stores classification, text and language of each text.' self.human.classification[entry.get_id()] = (classification, entry.get_guid(), entry.get_original_entry(), entry.get_language()) if classification is None: return self._add_classification(entry, classification) def train(self, language, count=None, offset=0): 'Given the language and optionaly count or offset shows dialog for realning' self.db.connect(user='******', database='meco', host='localhost', port=5432) try: for entry in self.db.entries(language=language, entry_count=10000, entry_offset=offset): # when entry was allready processed apply and skip if entry.id in self.human.classification: continue # ask whether entry is relevant automatic_classification = self.classify(entry.original_entry, language) print 'Original entry(' + str(entry.id) + '): \n"'+ entry.original_entry + '"\n automatic classification = ' + str(automatic_classification) if automatic_classification < self._low: auto = 'n' continue # TODO:odstranit elif automatic_classification >= self._high: auto = 'y' else: auto = '?' answer = raw_input('Is this entry relevant? (y/n/?/END))[' + auto + ']: ') if answer == 'y': self._add_to_human_classification(entry, True) elif answer == 'n': self._add_to_human_classification(entry, False) elif answer == '?': continue elif answer == 'END': break else: if automatic_classification < self._low: self._add_to_human_classification(entry, False) elif automatic_classification >= self._high: self._add_to_human_classification(entry, True) else: continue print 'after classification: ' + str(self.classify(entry.original_entry, language)) except KeyboardInterrupt: pass # store human input and word_dictionary self.human.store() self.word_dict.store() def manual_train(self, text, language, classification): 'Method for manual training of bayesian filter.' e = Entry(None, text, language) if classification is True: self._add_classification(e, True) if classification is False: self._add_classification(e, False) self.word_dict.store() def train_from_human_classification(self, filename, language): 'Method for training current bayesian filter from external human classification file' filehandler = open(filename, 'rb') content = pickle.load(filehandler) for entry_id in content: e = Entry(entry_id, list(content[entry_id])[1], list(content[entry_id])[2]) if e.get_language() == language: self._add_to_human_classification(e, list(content[entry_id])[0]) self.human.store() self.word_dict.store() def regenerate_word_dict(self): 'regenerate word dictionary according to human_input.' print self.human.classification self.word_dict.words = {} # go through human classification and create new word dictionary using classification for entry_id in self.human.classification: e = Entry(entry_id, list(self.human.classification[entry_id])[1], list(self.human.classification[entry_id])[2]) if list(self.human.classification[entry_id])[0] == True: self._add_classification(e, True) if list(self.human.classification[entry_id])[0] == False: self._add_classification(e, False) self.word_dict.store() def human_classify(self, output_pickle, language): 'This method creates output_pickle file containing user defined classifications of entries. May be used for creating test data.' self.db.connect(user='******', database='meco', host='localhost', port=5432) new_human_classify = HumanClassification(output_pickle) new_human_classify.load() try: for entry in self.db.entries(language=language, entry_count=None, entry_offset=0): # when entry was allready processed skip if entry.id in new_human_classify.classification: continue print 'Original entry: \n"'+ entry.original_entry + '"\n automatic classification = ' + str(self.classify(entry.original_entry, language)) automatic_classification = self.classify(entry.original_entry, language) if automatic_classification < self._low: auto = 'n' continue # TODO: odstranit elif automatic_classification >= self._high: auto = 'y' else: auto = '?' answer = raw_input('Is this entry relevant? (y/n/?/END))['+ auto +']: ') if answer == 'y': new_human_classify.classification[entry.id] = True elif answer == 'n': new_human_classify.classification[entry.id] = False elif answer == 'END': break else: if automatic_classification < self._low: new_human_classify.classification[entry.id] = False elif automatic_classification >= self._high: new_human_classify.classification[entry.id] = True else: new_human_classify.classification[entry.id] = None print 'Cassified count = ' + str(len(new_human_classify.classification)) except KeyboardInterrupt: pass new_human_classify.store() def classify(self, text, language): '''Given input text and language, method calculates probability of text being relevant to topic. @result probability that text is relevant''' input_entry = Entry(id=None, guid=None, entry=text, language=language) self.word_dict.words.setdefault(language, {}) # for each token claculate probability of being relevant to topic # and calculate according to bayes theorem # # p1p2p3........pn a # P = ------------------------------------------ = ------- # p1p2p3........pn + (1-p1)(1-p2)...(1-pn) a + b # a = 1.0 b = 1.0 for i in xrange(1, self.MAX_TOKEN_SIZE + 1): for token in input_entry.get_token(i): if not token in self.word_dict.words[language]: probability = 0.5 else: token_stats = self.word_dict.words[language][token] probability = token_stats['weight'] / token_stats['count'] a *= probability b *= 1 - probability if a + b == 0: return 0 else: result = a / (a + b) if result == 0.5: return -1 else: return a / (a + b) def _test_corelation(self, human_classified_pickle, language): 'This method prints corelation between user defined input in human_classified_pickle and automatic classification.' # # covariance # | # C(X,Y) E(XY) - E(X)E(Y) # corelation = ------------------ = ------------------------------------------- , a = E(XY), b = E(X), c = E(Y), d,= E(X^2), e = E(Y^2) # d(X)d(Y) sqrt(E(X^2) - E(X)^2) sqrt(E(Y^2) - E(Y)^2) # | # standard deviations # # X - automatically calculated probabilities # Y - human input probabilities # human_classified = HumanClassification(human_classified_pickle) human_classified.load() entry_count = len(human_classified.classification) a = 0.0 b = 0.0 c = 0.0 d = 0.0 e = 0.0 for entry_id in human_classified.classification: processed_entry = self.db.get_entry_by_id(entry_id) probability_auto = self.classify(processed_entry.original_entry, language) if human_classified.classification[entry_id]: probability_human = self.HUMAN_RATING_PROBABILITY else: probability_human = (1 - self.HUMAN_RATING_PROBABILITY) a += probability_human * probability_auto b += probability_auto c += probability_human d += probability_auto * probability_auto e += probability_human * probability_human # E() values a /= entry_count b /= entry_count c /= entry_count d /= entry_count e /= entry_count return (a - (b * c)) / (sqrt(d - (b * b)) * sqrt(e - (c * c))) def _test_percents(self, human_classified_pickle, language): 'This method returns ntuple containing (matches, false_positive, false_negative, unknown)' human_classified = HumanClassification(human_classified_pickle) human_classified.load() entry_count = len(human_classified.classification) true_positive = 0.0 true_negative = 0.0 matches = 0.0 false_positive = 0.0 false_negative = 0.0 unknown = 0.0 for entry_id in human_classified.classification: processed_entry = self.db.get_entry_by_id(entry_id) probability = self.classify(processed_entry.original_entry, language) if probability < self._low: if not human_classified.classification[entry_id]: matches += 1 true_negative += 1 else: false_negative += 1 elif probability >= self._high: if human_classified.classification[entry_id]: matches += 1 true_positive += 1 else: false_positive += 1 else: unknown += 1 return (matches, true_positive, true_negative, false_positive, false_negative, unknown, entry_count) def run_tests(self, input_file, language): 'Method for running tests on input file and get time elapsed for classification of one entry' self.db.connect(user='******', database='meco', host='localhost', port=5432) tmp = HumanClassification(input_file) tmp.load() self._logger.info('Running tests...') tests = Tests() tests.set_test_len(len(tmp.classification)) tests.set_train_len(len(self.human.classification)) tests.set_train_positive_len(self.human.get_positively_classified_count(language)) tests.set_train_negative_len(self.human.get_negatively_classified_count(language)) self._logger.info('Calculating corelation...') tests.set_corelation(self._test_corelation(input_file, language)) self._logger.info('Calculating percentage of classification accuracy...') tests.set_percents(self._test_percents(input_file, language)) print tests def get_time(self): 'Method for calculating time needed for one entry classification' self._logger.info('Downloading entries to run tests on...') i = 0 imax = 1000 entries = [] for entry in self.db.entries(language='en', entry_count=imax): i += 1 if i >= imax: break entries.append(entry.original_entry) self._logger.info('Masuring amount of entries to be calculated in 1sec') repetitions = 100 result_avg = 0.0 for i in xrange(0, repetitions): average = 0 for j in xrange(0, imax - 1): start = time.time() self.classify(entries[j], 'en') average += time.time() - start average /= imax result_avg += average result_avg /= repetitions return 'Classifier is able to classify ' + str(round(1/result_avg, 2)) + ' entries in one second.' def export_to_xml(self, language, specification): 'Method exports all data to xml files' self.word_dict.to_xml(filename='XML/word_dict', specification=specification) self.human.to_xml(self.db, 'XML/human_classification', language=language) def fix_old_human_classification(self, filename): 'method converts old human classification file to new one inlcluding text of tweets' self.db.connect(user='******', database='meco', host='localhost', port=5432) file = open(filename, 'rb') content = pickle.load(file) new_content = {} for entry_id in content: e = self.db.get_entry_by_id(entry_id) if e: new_content[entry_id] = (content[entry_id], e.original_entry, e.get_language()) new_file = open(filename +'new', 'wb') pickle.dump(new_content, new_file) def fix_old_human_classification2(self, filename): 'method converts old human classification file to new one inlcluding text of tweets' self.db.connect(user='******', database='meco', host='localhost', port=5432) file = open(filename, 'rb') content = pickle.load(file) new_content = {} for entry_id in content: e = self.db.get_entry_by_id(entry_id) if e: new_content[entry_id] = (list(content[entry_id])[0], e.get_guid(), e.get_original_entry(), e.get_language()) new_file = open(filename +'_new', 'wb') pickle.dump(new_content, new_file) def train_from_file(self, filename, language, classification): 'method trains classifier from some file' file = open(filename, 'r') for line in file: e = Entry(None, None, line, language) self._add_to_human_classification(e, classification) self.human.store() self.word_dict.store()
class Classifier: '''Class using for classification of tweets. Use classify() method for classification, train() method for training of bayesian filter.''' MAX_TOKEN_SIZE = 6 # defines word count in dictionary tuples HUMAN_RATING_PROBABILITY = 0.99 def __init__(self, low=0.5, high=0.5): # classification thresholds self._low = float(low) self._high = float(high) # add and setup logger self._logger = logging.getLogger() logging.basicConfig(level=logging.DEBUG) # db connection self.db = Connection() # load info about allready classified entries self._logger.info('Loading Allready classified entries...') self.human = HumanClassification( '/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/HumanClassification' ) self.human.load() # load database of words self._logger.info('Loading word dictionary...') self.word_dict = WordDictionary( '/mnt/minerva1/nlp/projects/twitter_classification/TwitterClassifier/pickles/WordDictionary' ) self.word_dict.load() # timer self._timer = timeit.Timer() def _add_classification(self, entry, classification): 'Add each token to word dictionary for futher classification.' language = entry.get_language() for i in xrange(1, self.MAX_TOKEN_SIZE + 1): # for each token add to word dictionary for token in entry.get_token(i): self.word_dict.words.setdefault(language, {}).setdefault( token, { 'count': 0, 'weight': 0 })['count'] += 1 if classification: self.word_dict.words[language][token][ 'weight'] += self.HUMAN_RATING_PROBABILITY else: self.word_dict.words[language][token]['weight'] += ( 1 - self.HUMAN_RATING_PROBABILITY) def _add_to_human_classification(self, entry, classification): 'Adds classified text to human classification. Stores classification, text and language of each text.' self.human.classification[entry.get_id()] = ( classification, entry.get_guid(), entry.get_original_entry(), entry.get_language()) if classification is None: return self._add_classification(entry, classification) def train(self, language, count=None, offset=0): 'Given the language and optionaly count or offset shows dialog for realning' self.db.connect(user='******', database='meco', host='localhost', port=5432) try: for entry in self.db.entries(language=language, entry_count=10000, entry_offset=offset): # when entry was allready processed apply and skip if entry.id in self.human.classification: continue # ask whether entry is relevant automatic_classification = self.classify( entry.original_entry, language) print 'Original entry(' + str( entry.id ) + '): \n"' + entry.original_entry + '"\n automatic classification = ' + str( automatic_classification) if automatic_classification < self._low: auto = 'n' continue # TODO:odstranit elif automatic_classification >= self._high: auto = 'y' else: auto = '?' answer = raw_input('Is this entry relevant? (y/n/?/END))[' + auto + ']: ') if answer == 'y': self._add_to_human_classification(entry, True) elif answer == 'n': self._add_to_human_classification(entry, False) elif answer == '?': continue elif answer == 'END': break else: if automatic_classification < self._low: self._add_to_human_classification(entry, False) elif automatic_classification >= self._high: self._add_to_human_classification(entry, True) else: continue print 'after classification: ' + str( self.classify(entry.original_entry, language)) except KeyboardInterrupt: pass # store human input and word_dictionary self.human.store() self.word_dict.store() def manual_train(self, text, language, classification): 'Method for manual training of bayesian filter.' e = Entry(None, text, language) if classification is True: self._add_classification(e, True) if classification is False: self._add_classification(e, False) self.word_dict.store() def train_from_human_classification(self, filename, language): 'Method for training current bayesian filter from external human classification file' filehandler = open(filename, 'rb') content = pickle.load(filehandler) for entry_id in content: e = Entry(entry_id, list(content[entry_id])[1], list(content[entry_id])[2]) if e.get_language() == language: self._add_to_human_classification(e, list(content[entry_id])[0]) self.human.store() self.word_dict.store() def regenerate_word_dict(self): 'regenerate word dictionary according to human_input.' print self.human.classification self.word_dict.words = {} # go through human classification and create new word dictionary using classification for entry_id in self.human.classification: e = Entry(entry_id, list(self.human.classification[entry_id])[1], list(self.human.classification[entry_id])[2]) if list(self.human.classification[entry_id])[0] == True: self._add_classification(e, True) if list(self.human.classification[entry_id])[0] == False: self._add_classification(e, False) self.word_dict.store() def human_classify(self, output_pickle, language): 'This method creates output_pickle file containing user defined classifications of entries. May be used for creating test data.' self.db.connect(user='******', database='meco', host='localhost', port=5432) new_human_classify = HumanClassification(output_pickle) new_human_classify.load() try: for entry in self.db.entries(language=language, entry_count=None, entry_offset=0): # when entry was allready processed skip if entry.id in new_human_classify.classification: continue print 'Original entry: \n"' + entry.original_entry + '"\n automatic classification = ' + str( self.classify(entry.original_entry, language)) automatic_classification = self.classify( entry.original_entry, language) if automatic_classification < self._low: auto = 'n' continue # TODO: odstranit elif automatic_classification >= self._high: auto = 'y' else: auto = '?' answer = raw_input('Is this entry relevant? (y/n/?/END))[' + auto + ']: ') if answer == 'y': new_human_classify.classification[entry.id] = True elif answer == 'n': new_human_classify.classification[entry.id] = False elif answer == 'END': break else: if automatic_classification < self._low: new_human_classify.classification[entry.id] = False elif automatic_classification >= self._high: new_human_classify.classification[entry.id] = True else: new_human_classify.classification[entry.id] = None print 'Cassified count = ' + str( len(new_human_classify.classification)) except KeyboardInterrupt: pass new_human_classify.store() def classify(self, text, language): '''Given input text and language, method calculates probability of text being relevant to topic. @result probability that text is relevant''' input_entry = Entry(id=None, guid=None, entry=text, language=language) self.word_dict.words.setdefault(language, {}) # for each token claculate probability of being relevant to topic # and calculate according to bayes theorem # # p1p2p3........pn a # P = ------------------------------------------ = ------- # p1p2p3........pn + (1-p1)(1-p2)...(1-pn) a + b # a = 1.0 b = 1.0 for i in xrange(1, self.MAX_TOKEN_SIZE + 1): for token in input_entry.get_token(i): if not token in self.word_dict.words[language]: probability = 0.5 else: token_stats = self.word_dict.words[language][token] probability = token_stats['weight'] / token_stats['count'] a *= probability b *= 1 - probability if a + b == 0: return 0 else: result = a / (a + b) if result == 0.5: return -1 else: return a / (a + b) def _test_corelation(self, human_classified_pickle, language): 'This method prints corelation between user defined input in human_classified_pickle and automatic classification.' # # covariance # | # C(X,Y) E(XY) - E(X)E(Y) # corelation = ------------------ = ------------------------------------------- , a = E(XY), b = E(X), c = E(Y), d,= E(X^2), e = E(Y^2) # d(X)d(Y) sqrt(E(X^2) - E(X)^2) sqrt(E(Y^2) - E(Y)^2) # | # standard deviations # # X - automatically calculated probabilities # Y - human input probabilities # human_classified = HumanClassification(human_classified_pickle) human_classified.load() entry_count = len(human_classified.classification) a = 0.0 b = 0.0 c = 0.0 d = 0.0 e = 0.0 for entry_id in human_classified.classification: processed_entry = self.db.get_entry_by_id(entry_id) probability_auto = self.classify(processed_entry.original_entry, language) if human_classified.classification[entry_id]: probability_human = self.HUMAN_RATING_PROBABILITY else: probability_human = (1 - self.HUMAN_RATING_PROBABILITY) a += probability_human * probability_auto b += probability_auto c += probability_human d += probability_auto * probability_auto e += probability_human * probability_human # E() values a /= entry_count b /= entry_count c /= entry_count d /= entry_count e /= entry_count return (a - (b * c)) / (sqrt(d - (b * b)) * sqrt(e - (c * c))) def _test_percents(self, human_classified_pickle, language): 'This method returns ntuple containing (matches, false_positive, false_negative, unknown)' human_classified = HumanClassification(human_classified_pickle) human_classified.load() entry_count = len(human_classified.classification) true_positive = 0.0 true_negative = 0.0 matches = 0.0 false_positive = 0.0 false_negative = 0.0 unknown = 0.0 for entry_id in human_classified.classification: processed_entry = self.db.get_entry_by_id(entry_id) probability = self.classify(processed_entry.original_entry, language) if probability < self._low: if not human_classified.classification[entry_id]: matches += 1 true_negative += 1 else: false_negative += 1 elif probability >= self._high: if human_classified.classification[entry_id]: matches += 1 true_positive += 1 else: false_positive += 1 else: unknown += 1 return (matches, true_positive, true_negative, false_positive, false_negative, unknown, entry_count) def run_tests(self, input_file, language): 'Method for running tests on input file and get time elapsed for classification of one entry' self.db.connect(user='******', database='meco', host='localhost', port=5432) tmp = HumanClassification(input_file) tmp.load() self._logger.info('Running tests...') tests = Tests() tests.set_test_len(len(tmp.classification)) tests.set_train_len(len(self.human.classification)) tests.set_train_positive_len( self.human.get_positively_classified_count(language)) tests.set_train_negative_len( self.human.get_negatively_classified_count(language)) self._logger.info('Calculating corelation...') tests.set_corelation(self._test_corelation(input_file, language)) self._logger.info( 'Calculating percentage of classification accuracy...') tests.set_percents(self._test_percents(input_file, language)) print tests def get_time(self): 'Method for calculating time needed for one entry classification' self._logger.info('Downloading entries to run tests on...') i = 0 imax = 1000 entries = [] for entry in self.db.entries(language='en', entry_count=imax): i += 1 if i >= imax: break entries.append(entry.original_entry) self._logger.info( 'Masuring amount of entries to be calculated in 1sec') repetitions = 100 result_avg = 0.0 for i in xrange(0, repetitions): average = 0 for j in xrange(0, imax - 1): start = time.time() self.classify(entries[j], 'en') average += time.time() - start average /= imax result_avg += average result_avg /= repetitions return 'Classifier is able to classify ' + str(round( 1 / result_avg, 2)) + ' entries in one second.' def export_to_xml(self, language, specification): 'Method exports all data to xml files' self.word_dict.to_xml(filename='XML/word_dict', specification=specification) self.human.to_xml(self.db, 'XML/human_classification', language=language) def fix_old_human_classification(self, filename): 'method converts old human classification file to new one inlcluding text of tweets' self.db.connect(user='******', database='meco', host='localhost', port=5432) file = open(filename, 'rb') content = pickle.load(file) new_content = {} for entry_id in content: e = self.db.get_entry_by_id(entry_id) if e: new_content[entry_id] = (content[entry_id], e.original_entry, e.get_language()) new_file = open(filename + 'new', 'wb') pickle.dump(new_content, new_file) def fix_old_human_classification2(self, filename): 'method converts old human classification file to new one inlcluding text of tweets' self.db.connect(user='******', database='meco', host='localhost', port=5432) file = open(filename, 'rb') content = pickle.load(file) new_content = {} for entry_id in content: e = self.db.get_entry_by_id(entry_id) if e: new_content[entry_id] = (list(content[entry_id])[0], e.get_guid(), e.get_original_entry(), e.get_language()) new_file = open(filename + '_new', 'wb') pickle.dump(new_content, new_file) def train_from_file(self, filename, language, classification): 'method trains classifier from some file' file = open(filename, 'r') for line in file: e = Entry(None, None, line, language) self._add_to_human_classification(e, classification) self.human.store() self.word_dict.store()