train_labels = np.expand_dims(train_labels, 1) test_labels = np.expand_dims(test_labels, 1) train_data = np.column_stack((train_samples, train_labels)) test_data = np.column_stack((test_samples, test_labels)) if t_label is not None: # Redefine the label of the test sample test_labels[t] = t_label test_data[t][-1] = t_label if t_features is not None: # Redefine the feature values of the test sample test_samples[t] = t_features test_data[t] = np.concatenate((t_features, test_labels[t])) train_set = DataSet(train_samples, train_labels) test_set = DataSet(test_samples, test_labels) validation_set = None data_sets = base.Datasets(train=train_set, test=test_set, validation=validation_set) # Plot train samples plot_samples(train_samples, train_labels, plot_pdf=pdf, plot_title='Train Dataset') # Plot train samples with test sample plot_samples(train_samples, train_labels, plot_pdf=pdf, plot_title='Train Dataset', ref_ex=test_samples[t]) # Plot test samples plot_samples(test_samples, test_labels, plot_pdf=pdf, plot_title='Test Dataset',
val_labels = train_labels[:n_val] train_labels = train_labels[n_val:] if t_label is not None: # Redefine the label of the test sample test_labels[t] = t_label if t_features is not None: # Redefine the feature values of the test sample test_samples[t] = t_features # Adjust the shape train_labels = np.expand_dims(train_labels, 1) test_labels = np.expand_dims(test_labels, 1) val_labels = np.expand_dims(val_labels, 1) train_set = DataSet(train_samples, train_labels) test_set = DataSet(test_samples, test_labels) validation_set = DataSet(val_samples, val_labels) data_sets = base.Datasets(train=train_set, test=test_set, validation=validation_set) # Plot train samples plot_samples(train_samples, train_labels, plot_title='Train Dataset') # Plot train samples with test sample plot_samples(train_samples, train_labels, plot_title='Train Dataset', ref_ex=test_samples[t])
from src.InterpretableSpn import InterpretableSpn from src.influence.dataset import DataSet # for train and test set creation from src.help_functions import * from prettytable import PrettyTable # Get train and test set num_train_samples = 5000 num_test_samples = 10000 (train_images, train_labels), (test_images, test_labels) = load_mnist(num_train_samples, num_test_samples, normalization=False) train_set = DataSet(train_images, np.expand_dims(train_labels, 1)) test_set = DataSet(test_images, np.expand_dims(test_labels, 1)) validation_set = None data_sets = base.Datasets(train=train_set, test=test_set, validation=validation_set) label_idx = 784 num_classes = 10 batch_size = 1 output_path = "/home/ml-mrothermel/projects/Interpreting-SPNs/output/spns" file_name = "tf_mnist_spn_9" # Import a trained, saved and converted model with new placeholders sample_placeholder = tf.placeholder(dtype=np.float32,