# create a second axis for onother data set
    # to better visualize different scaled measures
    fig1_ax2 = fig1_ax1.twinx()
    fig1_ax2.set_ylabel("angular velocity (deg/s)", color='r')
    fig1_ax2.tick_params("y", colors='r')
    fig1_ax2.plot(times, -angular_velocities[2], color='r')
    fig1_ax2.set_ylim(ylim)
    fig1_ax2.set_xlim(xlim)
    plt.legend()


if __name__ == "__main__":
    window_size = 20

    # currently default format is unmodified fullinertial but other formats are / will be supported
    times, coordinates, altitudes, gps_speed, heading, accelerations, angular_velocities = parse_input(
        sys.argv[1], [InputType.UNMOD_FULLINERTIAL])

    converts_measurement_units(accelerations, np.array([0.1]), gps_speed,
                               coordinates, heading)

    normalize_timestamp(times)

    data_preprocessing_plot("Before")

    # reduce accelerations disturbance
    times, accelerations = reduce_disturbance(times, accelerations,
                                              window_size)
    # reduce angular velocities disturbance
    _, angular_velocities = reduce_disturbance(times, angular_velocities,
                                               window_size)
    # slice gps_speed to remove null values
Example #2
0
def get_trajectory_from_path(path):
    """
    parse input file from path, clean data and integrate positions

    :param path: string input file
    :return: 3 numpy array: 3xn position, 1xn times, 4xn angular position as quaternions
    """

    window_size = 20

    # currently default format is unmodified fullinertial but other formats are / will be supported
    times, coordinates, altitudes, gps_speed, heading, accelerations, angular_velocities = parse_input(
        path, [InputType.UNMOD_FULLINERTIAL])

    converts_measurement_units(accelerations, angular_velocities, gps_speed,
                               coordinates, heading)

    # get positions from GNSS data
    gnss_positions, headings_2 = get_positions(coordinates, altitudes)

    # reduce accelerations disturbance
    times, accelerations = reduce_disturbance(times, accelerations,
                                              window_size)
    # reduce angular velocities disturbance
    _, angular_velocities = reduce_disturbance(times, angular_velocities,
                                               window_size)
    # truncate other array to match length of acc, thetas, times array
    gnss_positions = gnss_positions[:,
                                    round(window_size /
                                          2):-round(window_size / 2)]

    # with "final" times now get velocities and
    real_velocities = get_velocities(times, gnss_positions)
    # scalar speed from GNSS position (better than from dataset because avoids Kalmar filter)
    real_speeds = np.linalg.norm(real_velocities, axis=0)

    # get time windows where vehicle is stationary
    stationary_times = get_stationary_times(gps_speed)

    # clear gyroscope drift
    angular_velocities = clear_gyro_drift(angular_velocities, stationary_times)
    # set times start to 0
    normalize_timestamp(times)

    # correct z-axis alignment
    accelerations, angular_velocities = correct_z_orientation(
        accelerations, angular_velocities, stationary_times)

    # remove g
    accelerations[2] -= accelerations[
        2, stationary_times[0][0]:stationary_times[0][-1]].mean()

    # correct alignment in xy plane
    #accelerations = correct_xy_orientation(accelerations, angular_velocities)

    motion_time = get_first_motion_time(stationary_times, gnss_positions)
    initial_angular_position = get_initial_angular_position(
        gnss_positions, motion_time)

    # convert to laboratory frame of reference
    accelerations, angular_positions = rotate_accelerations(
        times, accelerations, angular_velocities, heading,
        initial_angular_position)

    # rotate to align y to north, x to east
    accelerations = align_to_world(gnss_positions, accelerations, motion_time)
    # angular position doesn't need to be aligned to world if starting angular position is already aligned and following
    # angular positions are calculated from that

    initial_speed = np.array([[gps_speed[0]], [0], [0]])
    # integrate acceleration with gss velocities correction
    correct_velocities = cumulative_integrate(times,
                                              accelerations,
                                              initial_speed,
                                              adjust_data=real_velocities,
                                              adjust_frequency=1)

    if sign_inversion_is_necessary(correct_velocities):
        accelerations *= -1
        correct_velocities *= -1

    correct_position = cumulative_integrate(times,
                                            correct_velocities,
                                            adjust_data=gnss_positions,
                                            adjust_frequency=1)

    return correct_position, times, angular_positions
    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""
import numpy as np
import matplotlib.pyplot as plt

from src.input_manager import parse_input, InputType
from src.clean_data_utils import converts_measurement_units
from src.gnss_utils import get_positions
from plots_scripts.plot_utils import plot_vectors

if __name__ == "__main__":
    # load dataset
    crash_01_dataset = 'tests/test_fixtures/split_log_1321_1322_USB0_unmodified-fullinertial.txt'
    times, coordinates, altitudes, gps_speed, heading, accelerations, angular_velocities = parse_input(
        crash_01_dataset, [InputType.UNMOD_FULLINERTIAL])
    converts_measurement_units(accelerations, angular_velocities, gps_speed,
                               coordinates)
    #get cartesian position from world one
    gnss_positions, headings = get_positions(coordinates, altitudes)
    # creates empty array to fill
    approx_points = np.zeros((2, len(times)))
    # size of step using iterating array
    step = round(len(times) / 10)
    for i in range(0, len(times), step):
        # creates local slice of times and positions
        local_times = times[i:i + step]
        local_positions = gnss_positions[0:2, i:i + step]
        # calculate coefficients of polynomial approximation for x-coordinates
        poly_x = np.polyfit(local_times, local_positions[0], deg=1)
        # calculate coefficients of polynomial approximation for y-coordinates
from src.gnss_utils import get_positions, get_velocities, get_accelerations
from src.input_manager import parse_input, InputType
from src.integrate import cumulative_integrate

if __name__ == '__main__':
    window_size = 20

    # for benchmarking
    import time

    start_time = time.time()

    #input path
    parking_fullinertial_unmod = 'tests/test_fixtures/parking.tsv'
    crash = False
    times, coordinates, altitudes, gps_speed, heading, accelerations, angular_velocities = parse_input(
        parking_fullinertial_unmod, [InputType.UNMOD_FULLINERTIAL])
    converts_measurement_units(accelerations, angular_velocities, gps_speed, coordinates, heading)
    period = times[1] - times[0]

    times, gps_speed, accelerations, angular_velocities, coordinates, heading = \
        truncate_if_crash(crash, times, gps_speed, accelerations, angular_velocities, coordinates, heading)

    # get positions from GNSS data
    gnss_positions, headings_2 = get_positions(coordinates, altitudes)

    gnss_distance = np.linalg.norm(np.array([gnss_positions[:, i] - gnss_positions[:, i - 1]
                                   for i, x in enumerate(gnss_positions[:, 1:].T, 1)]), axis=1).cumsum()
    # insert initial distance
    gnss_distance = np.insert(gnss_distance, 0, 0)
    # reshape to 1xn shape
    gnss_distance = np.reshape(gnss_distance, (1, len(gnss_distance)))
 def setUp(self):
     filepath = 'tests/test_fixtures/crash_01.txt'
     self.times, self.gps_speed, self.accelerations, self.angular_velocities = parse_input(
         filepath, [InputType.INERTIAL])
     converts_measurement_units(self.accelerations, self.angular_velocities,
                                self.gps_speed)