Example #1
0
    def plot_gyro(self):
        N = self.raw_us.shape[0]
        raw_us = self.raw_us[:, :3]
        net_us = self.net_us[:, :3]

        net_qs, imu_Rots, net_Rots = self.integrate_with_quaternions_superfast(N,
        raw_us, net_us)
        imu_rpys = 180/np.pi*SO3.to_rpy(imu_Rots).cpu()
        net_rpys = 180/np.pi*SO3.to_rpy(net_Rots).cpu()
        self.plot_orientation(imu_rpys, net_rpys, N)
        self.plot_orientation_error(imu_Rots, net_Rots, N)
Example #2
0
    def align_traj(self):
        """yaw only and position alignment at initial time"""
        self.gt['rpys'] = SO3.to_rpy(self.gt['Rots'].cuda()).cpu()
        self.iekf['rpys'] = SO3.to_rpy(self.iekf['Rots'].cuda()).cpu()

        self.gt['ps'] -= self.gt['ps'][0].clone()
        self.iekf['ps'] -= self.iekf['ps'][0].clone()
        rpys = self.gt['rpys'][:2] - self.iekf['rpys'][:2]
        Rot = SO3.from_rpy(rpys[:, 0], rpys[:, 1], rpys[:, 2])
        Rot = Rot[0].repeat(self.iekf['ps'].shape[0], 1, 1)

        self.iekf['Rots'] = Rot.bmm(self.iekf['Rots'])
        self.iekf['vs'] = bmv(Rot, self.iekf['vs'])
        self.iekf['ps'] = bmv(Rot, self.iekf['ps'])
        self.iekf['rpys'] = SO3.to_rpy(self.iekf['Rots'].cuda()).cpu()
Example #3
0
    def display_test(self, dataset, mode):
        self.roes = {
            'Rots': [],
            'yaws': [],
        }
        self.to_open_vins(dataset)
        for i, seq in enumerate(dataset.sequences):
            print('\n', 'Results for sequence ' + seq )
            self.seq = seq
            # get ground truth
            self.gt = dataset.load_gt(i)
            Rots = SO3.from_quaternion(self.gt['qs'].cuda())
            self.gt['Rots'] = Rots.cpu()
            self.gt['rpys'] = SO3.to_rpy(Rots).cpu()
            # get data and estimate
            self.net_us = pload(self.address, seq, 'results.p')['hat_xs']
            self.raw_us, _ = dataset[i]
            N = self.net_us.shape[0]
            self.gyro_corrections =  (self.raw_us[:, :3] - self.net_us[:N, :3])
            self.ts = torch.linspace(0, N*self.dt, N)

            self.convert()
            self.plot_gyro()
            self.plot_gyro_correction()
            plt.show()
Example #4
0
    def read_data(self, data_dir):
        r"""Read the data from the dataset"""

        # threshold for ZUPT ground truth
        sm_velocity_max_threshold = 0.004  # m/s

        f = os.path.join(self.predata_dir, 'urban06.p')
        if True and os.path.exists(f):
            return

        print("Start read_data, be patient please")

        def set_path(seq):
            path_imu = os.path.join(data_dir, seq, "sensor_data",
                                    "xsens_imu.csv")
            path_gt = os.path.join(data_dir, seq, "global_pose.csv")
            # path_odo = os.path.join(data_dir, seq, "encoder.csv")
            return path_imu, path_gt

        time_factor = 1e9  # ns -> s

        def interpolate(x, t, t_int, angle=False):
            """
            Interpolate ground truth with sensors
            """
            x_int = np.zeros((t_int.shape[0], x.shape[1]))
            for i in range(x.shape[1]):
                if angle:
                    x[:, i] = np.unwrap(x[:, i])
                x_int[:, i] = np.interp(t_int, t, x[:, i])
            return x_int

        sequences = os.listdir(data_dir)
        # read each sequence
        for sequence in sequences:
            print("\nSequence name: " + sequence)
            path_imu, path_gt = set_path(sequence)
            imu = np.genfromtxt(path_imu, delimiter=",")

            # Urban00-05 and campus00 have only quaternion and Euler data
            if not imu.shape[1] > 10:
                cprint("No IMU data for dataset " + sequence, 'yellow')
                continue
            gt = np.genfromtxt(path_gt, delimiter=",")

            # time synchronization between IMU and ground truth
            t0 = np.max([gt[0, 0], imu[0, 0]])
            t_end = np.min([gt[-1, 0], imu[-1, 0]])

            # start index
            idx0_imu = np.searchsorted(imu[:, 0], t0)
            idx0_gt = np.searchsorted(gt[:, 0], t0)

            # end index
            idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
            idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')

            # subsample
            imu = imu[idx0_imu:idx_end_imu]
            gt = gt[idx0_gt:idx_end_gt]
            t = imu[:, 0]

            # take ground truth position
            p_gt = gt[:, [4, 8, 12]]
            p_gt = p_gt - p_gt[0]

            # take ground matrix pose
            Rot_gt = torch.Tensor(gt.shape[0], 3, 3)
            for j in range(3):
                Rot_gt[:, j] = torch.Tensor(gt[:, 1 + 4 * j:1 + 4 * j + 3])
            q_gt = SO3.to_quaternion(Rot_gt)
            # convert to angle orientation
            rpys = SO3.to_rpy(Rot_gt)
            t_gt = gt[:, 0]
            # interpolate ground-truth
            p_gt = interpolate(p_gt, t_gt, t)
            rpys = interpolate(rpys.numpy(), t_gt, t, angle=True)

            # convert from numpy
            ts = (t - t0) / time_factor
            p_gt = torch.Tensor(p_gt)
            rpys = torch.Tensor(rpys).float()
            q_gt = SO3.to_quaternion(
                SO3.from_rpy(rpys[:, 0], rpys[:, 1], rpys[:, 2]))
            imu = torch.Tensor(imu).float()

            # take IMU gyro and accelerometer and magnetometer
            imu = imu[:, 8:17]

            dt = ts[1:] - ts[:-1]
            # compute speed ground truth (apply smoothing)
            v_gt = torch.zeros(p_gt.shape[0], 3)
            for j in range(3):
                p_gt_smooth = savgol_filter(p_gt[:, j], 11, 1)
                v_j = (p_gt_smooth[1:] - p_gt_smooth[:-1]) / dt
                v_j_smooth = savgol_filter(v_j, 11, 0)
                v_gt[1:, j] = torch.Tensor(v_j_smooth)

            # ground truth specific motion measurement (binary)
            zupts = v_gt.norm(dim=1, keepdim=True) < sm_velocity_max_threshold
            zupts = zupts.float()
            # set ground truth consistent with ZUPT
            v_gt[zupts.squeeze() == 1] = 0

            # save for all training
            mondict = {
                'xs': zupts.float(),
                'us': imu.float(),
            }
            pdump(mondict, self.predata_dir, sequence + ".p")
            # save ground truth
            mondict = {
                'ts': ts,
                'qs': q_gt.float(),
                'vs': v_gt.float(),
                'ps': p_gt.float(),
            }
            pdump(mondict, self.predata_dir, sequence + "_gt.p")