Example #1
0
def KLSLoc(label, classHeatMap, paras):
    paras['specialType'] = label
    paras['thresh'] = calculateThreshold(imgFile)
    maps3, common_labels, F0 = region_special_map(paras)
    kls, categoryMap, classMap = mergePatchAndRegion(classHeatMap, maps3,
                                                     label, 0.5)
    return kls
    nums = np.zeros((type_num, ))
    result_file = '../../Data/Results/segmentation/RD/rd.txt'
    f = open(result_file, 'w')

    for t in range(0, type_num):
        mask_folder_t = data_folder + str(t + 1) + '_mask/'
        mask_names = os.listdir(mask_folder_t)
        img_folder_t = data_folder + str(t + 1) + '_selected/'
        for i in range(len(mask_names)):
            mask_name = mask_names[i]
            mask_path = mask_folder_t + mask_name
            im_name = mask_name[:-4]

            label_mask = load_mask_mat(mask_path)
            img_path = img_folder_t + im_name + '.jpg'
            th = calculateThreshold(img_path)
            detect_region, F0, remove_labels = detect_regions(
                img_path, eraseMap, k, minSize, sigma, th)
            # predict_heatmap = imresize(predict_heatmap, [imSize, imSize]).astype(np.float) / 255.0
            # predict_heatmap_th = np.copy(predict_heatmap)
            # predict_heatmap_th[np.where(predict_heatmap_th < 0.5)] = 0
            # predict_segment_labels = set(F0[np.where(predict_heatmap_th>0)])
            # predict_mask = np.zeros(F0.shape).astype(np.uint8)
            # for sl in predict_segment_labels:
            #     if sl not in remove_labels:
            #         predict_mask[np.where(F0==sl)] = 1
            # cls_confusion[t, predict_label-1] += 1

            intersectionPixelNum = len(
                np.argwhere((detect_region * label_mask) > 0))
            unionPixelNum = len(np.argwhere((detect_region + label_mask) > 0))
    paras['returnRegionLabels'] = [0]  # 0: special, 1: rest, 2: common
    paras['train'] = False
    is_showProposals = paras['is_showProposals'] = True

    resultsSaveFolder = '../../Data/Results/segmentation/'
    imName = imgFile[-20:-4]
    rotation = False
    # ----no rotation----
    if rotation == False:
        classHeatMap = region_class_heatMap(paras)
        class_names = ['background', 'arc', 'drapery', 'radial', 'hot-spot']
        labels = mapsToLabels(classHeatMap)
        # visRegionClassHeatMap(classHeatMap, class_names)

        paras['specialType'] = labels  # 0: arc, 1: drapery, 2: radial, 3: hot-spot
        paras['thresh'] = calculateThreshold(imgFile)
        print calculateThreshold(imgFile)
        maps3, common_labels, F0 = region_special_map(paras, isReturnMaps=True)

         # showMaps3(maps3)
        # showSelectRegions(F0, common_labels)
        # kls = mergePatchAndRegion(classHeatMap, maps3, labels, paras['th']*0.95)
        kls, categoryMap, classMap = mergePatchAndRegion(classHeatMap, maps3, labels, 0.5)

        intersectionPixelNum = len(np.argwhere((kls * mask_c) > 0))
        unionPixelNum = len(np.argwhere((kls + mask_c) > 0))
        IoU = float(intersectionPixelNum) / float(unionPixelNum)
        print 'IoU:', IoU

        for ci in xrange(classHeatMap.shape[2]):
            imsave(resultsSaveFolder+imName+'_classMap_'+str(ci)+'.jpg', classHeatMap[:, :, ci])
Example #4
0
def testSegmentation(feaType,
                     wordsNum,
                     patchSize,
                     mk,
                     paras,
                     labeledDataFolder,
                     resultSaveFolder,
                     classNum=4,
                     wordsFolder='../../Data/Features/',
                     mini=False,
                     detection=True,
                     merge=True):
    paras['sizeRange'] = (patchSize, patchSize)
    paras['patchSize'] = np.array([patchSize, patchSize])
    paras['feaType'] = feaType

    if mini is True:
        mini_str = '_mini'
    else:
        mini_str = ''

    if detection is True:
        detection_str = ''
    else:
        detection_str = '_noDetection'

    if merge is True:
        merge_str = ''
    else:
        merge_str = '_noMerge'

    if feaType == 'LBP':
        paras['lbp_wordsFile_s1'] = wordsFolder + 'type4_LBPWords_s1_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras['lbp_wordsFile_s2'] = wordsFolder + 'type4_LBPWords_s2_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras['lbp_wordsFile_s3'] = wordsFolder + 'type4_LBPWords_s3_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras['lbp_wordsFile_s4'] = wordsFolder + 'type4_LBPWords_s4_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
    if feaType == 'SIFT':
        paras[
            'sift_wordsFile_s1'] = wordsFolder + 'type4_SIFTWords_s1_s' + str(
                patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras[
            'sift_wordsFile_s2'] = wordsFolder + 'type4_SIFTWords_s2_s' + str(
                patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras[
            'sift_wordsFile_s3'] = wordsFolder + 'type4_SIFTWords_s3_s' + str(
                patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras[
            'sift_wordsFile_s4'] = wordsFolder + 'type4_SIFTWords_s4_s' + str(
                patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
    if feaType == 'His':
        paras['his_wordsFile_s1'] = wordsFolder + 'type4_HisWords_s1_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras['his_wordsFile_s2'] = wordsFolder + 'type4_HisWords_s2_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras['his_wordsFile_s3'] = wordsFolder + 'type4_HisWords_s3_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
        paras['his_wordsFile_s4'] = wordsFolder + 'type4_HisWords_s4_s' + str(
            patchSize) + '_b300_w' + str(wordsNum) + mini_str + '.hdf5'
    resultFile = 'segmentation_' + feaType + '_w' + str(wordsNum) + '_s' + str(
        patchSize) + '_mk' + str(mk) + detection_str + merge_str + '.txt'
    f_result = open(resultSaveFolder + resultFile, 'w')
    if mk == 0:
        paras['mk'] = None
    else:
        paras['mk'] = mk
    IoU_accuracy = np.zeros((classNum, ))
    confusionArray_c = np.zeros((classNum, classNum))
    for c in xrange(0, classNum):
        labelImgFolder_c = labeledDataFolder + str(c + 1) + '_selected/'
        labelMaskFolder_c = labeledDataFolder + str(c + 1) + '_mask/'
        imgFiles = os.listdir(labelImgFolder_c)
        for imgName in imgFiles:
            imgFile = labelImgFolder_c + imgName
            imName = imgName[:-4]
            mask_c = load_mask_mat(labelMaskFolder_c + imName + '.mat')

            if detection is True:
                paras['thresh'] = calculateThreshold(imgFile)
            else:
                paras['thresh'] = 0
            paras['imgFile'] = imgFile
            im = skimage.io.imread(imgFile)
            if len(im.shape) == 2:
                img = skimage.color.gray2rgb(im)
            paras['img'] = img
            paras['im'] = im
            # imName = imgFile[-20:-4]
            # ----no rotation----
            class_names = [
                'background', 'arc', 'drapery', 'radial', 'hot-spot'
            ]
            labels, kls, categoryMap, classMap, classHeatMap = SCKLS(paras)
            confusionArray_c[c, labels] += 1

            if False:  # show segmentation results
                plt.figure(10)
                plt.imshow(kls, cmap='gray')
                plt.title(class_names[labels + 1] + '_predict')
                plt.axis('off')

                plt.figure(11)
                plt.imshow(mask_c, cmap='gray')
                plt.title(class_names[c + 1] + '_groundTruth')
                plt.axis('off')

                plt.figure(12)
                plt.imshow(im, cmap='gray')
                plt.title('raw image')
                plt.axis('off')
                plt.show()
                mask_c = mask_c.astype(np.int)
                kls = kls.astype(np.int)
                # else:
                #         print 'classification error!'
            if merge is False:
                kls = np.zeros(kls.shape)
                kls[np.where(categoryMap > 0.3)] = 1
            intersectionPixelNum = len(np.argwhere((kls * mask_c) > 0))
            unionPixelNum = len(np.argwhere((kls + mask_c) > 0))
            IoU = float(intersectionPixelNum) / float(unionPixelNum)
            print 'IoU:', IoU
            if labels == c:
                IoU_accuracy[c] += IoU
            f_result.write(imgName + ' ' + str(c) + ' ' + str(labels) + ' ' +
                           str(IoU) + '\n')
    f_result.close()
    print confusionArray_c
    accuracy = confusionArray_c / np.sum(confusionArray_c, axis=1).reshape(
        classNum, 1)
    rightNums = [confusionArray_c[k, k] for k in xrange(classNum)]
    rightNums = np.array(rightNums, dtype='f')
    IoUs = IoU_accuracy / rightNums
    print accuracy
    print rightNums
    print IoUs
    return 0
def generateRegions():
    paras = {}
    paras['k'] = 60
    paras['minSize'] = 50
    paras['patchSize'] = np.array([16, 16])
    paras['region_patch_ratio'] = 0.1
    paras['sigma'] = 0.5
    paras['alpha'] = 0.6
    paras['types'] = ['arc', 'drapery', 'radial', 'hot_spot']
    paras[
        'lbp_wordsFile_s1'] = '../../Data/Features/type4_LBPWords_s1_s16_b300_w500.hdf5'
    paras[
        'lbp_wordsFile_s2'] = '../../Data/Features/type4_LBPWords_s2_s16_b300_w500.hdf5'
    paras[
        'lbp_wordsFile_s3'] = '../../Data/Features/type4_LBPWords_s3_s16_b300_w500.hdf5'
    paras[
        'lbp_wordsFile_s4'] = '../../Data/Features/type4_LBPWords_s4_s16_b300_w500.hdf5'

    eraseMapPath = '../../Data/eraseMap.bmp'
    if not os.path.exists(eraseMapPath):
        imSize = 440
        eraseMap = np.zeros((imSize, imSize))
        radius = imSize / 2
        centers = np.array([219.5, 219.5])
        for i in range(440):
            for j in range(440):
                if np.linalg.norm(np.array([i, j]) - centers) > 220 + 5:
                    eraseMap[i, j] = 1
        imsave(eraseMapPath, eraseMap)
    else:
        eraseMap = imread(eraseMapPath) / 255

    paras['eraseMap'] = eraseMap
    paras['sizeRange'] = (16, 16)
    paras['imResize'] = (256, 256)
    paras['imgSize'] = (440, 440)
    paras['nk'] = 1
    resolution = 1
    gridSize = np.array([resolution, resolution])
    paras['resolution'] = resolution
    paras['gridSize'] = gridSize
    paras['sdaePara'] = None
    paras['feaType'] = 'LBP'
    paras['mk'] = 0
    paras['withIntensity'] = False
    paras['diffResolution'] = False
    paras['isSave'] = False
    paras['is_rotate'] = False
    paras['train'] = False

    labelFile = '../../Data/type4_b500.txt'
    imageFolder = '../../Data/all38044JPG/'
    imgType = '.jpg'
    [names, labels] = parseNL(labelFile)
    f = h5py.File('../../Data/regions.hdf5', 'w')

    # imgFile = '../../Data/labeled2003_38044/N20031221G071131.bmp'
    # label = 2

    for i in range(len(names)):
        name = names[i]
        imgFile = imageFolder + name + imgType
        label = labels[i]

        paras['imgFile'] = imgFile
        im = np.array(imread(imgFile), dtype='f') / 255
        paras['im'] = im
        im1 = skimage.io.imread(imgFile)
        if len(im1.shape) == 2:
            img = skimage.color.gray2rgb(im1)
        paras['img'] = img
        paras['thresh'] = calculateThreshold(imgFile)

        paras['specialType'] = int(
            label) - 1  # 0: arc, 1: drapery, 2: radial, 3: hot-spot
        paras['returnRegionLabels'] = [0]  # 0: special, 1: rest, 2: common
        paras['th'] = 0.45

        F0, region_labels, eraseLabels = region_special_map(paras)

        # save type: 0: common, 1: arc, 2, drapery, 3: radial, 4: hot-spot, 5: rest
        mask = np.zeros(F0.shape, dtype='i')
        mask.fill(5)

        for i in region_labels:
            mask[np.where(F0 == i)] = int(label)

        paras['specialType'] = int(
            label) - 1  # 0: arc, 1: drapery, 2: radial, 3: hot-spot
        paras['returnRegionLabels'] = [2]  # 0: special, 1: rest, 2: common
        paras['th'] = 0.25
        # paras['thresh'] = 0

        F0, region_labels, eraseLabels, filterout_labels = region_special_map(
            paras, returnFilteroutLabels=True)
        # print filterout_labels
        region_labels = region_labels + filterout_labels
        for i in region_labels:
            mask[np.where(F0 == i)] = 0

        f.create_dataset(name, mask.shape, dtype='i', data=mask)
        print name + ' saved!'
    f.close()

    return 0
    minSize = 300
    patchSize = np.array([28, 28])
    region_patch_ratio = 0.2
    sigma = 0.5
    alpha = 0.6

    imSize = 224
    eraseMap = np.zeros((imSize, imSize))
    radius = imSize / 2
    centers = np.array([radius - 0.5, radius - 0.5])
    for i in range(imSize):
        for j in range(imSize):
            if np.linalg.norm(np.array([i, j]) - centers) > radius + 5:
                eraseMap[i, j] = 1

    th = calculateThreshold(imgFile)
    # F0, region_patch_list, _ = generate_subRegions(imgFile, patchSize, region_patch_ratio, eraseMap, k, minSize, sigma)
    # show_region_patch_grid(imgFile, F0, region_patch_list, alpha, eraseMap, saveFolder='/home/ljm/NiuChuang/KLSA-auroral-images/Data/Results/initial_segmentation/')
    # F0, region_patch_list, eraseLabels, filteroutLabels = generate_subRegions(imgFile, patchSize, region_patch_ratio, eraseMap, k, minSize, sigma, returnFilteroutLabels=True, thresh=th)
    # F0, eraseLabels, filteroutLabels = detect_regions(imgFile, eraseMap, k, minSize, sigma, th)
    detect_regions, _, _ = detect_regions(imgFile,
                                          eraseMap,
                                          k,
                                          minSize,
                                          sigma,
                                          th,
                                          imResize=imSize)
    # detect_regions = numpy.ones(F0.shape).astype(numpy.uint8) * 255
    # removeLabels = list(eraseLabels) + filteroutLabels
    # for l in removeLabels:
    #     detect_regions[np.where(F0==l)] = 0