# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    batch_size = 1
    # Training cycle
    for epoch in range(25):
        avg_cost = 0.
        for batch in range(int(len(training_X) / batch_size)):
            x_batch = training_X[batch * batch_size:batch * batch_size +
                                 batch_size]
            #tf.nn.batch_normalization(x_batch)
            y_batch = training_Y[batch * batch_size:batch * batch_size +
                                 batch_size]
            #tf.nn.batch_normalization(y_batch)
            # Run optimization op (backprop) and cost op (to get loss value)
            _, c = sess.run([optimizer, cost_func],
                            feed_dict={
                                x: x_batch,
                                y: y_batch
                            })
            # Compute average loss
            avg_cost += c / int(len(training_X) / batch_size)
        print(avg_cost)
    # Test model
    prediction = pred.eval(feed_dict={x: testing_X}, session=sess)
    mape = eval.mape(prediction, testing_Y)

    print(mape)
    print(np.mean(mape))
def run_regression(X_train,
                   Y_train,
                   X_test,
                   Y_test,
                   lambda_value=0.1,
                   normalize=False,
                   batch_size=10,
                   alpha=1e-8):
    x_train = feature_normalize(X_train) if normalize else X_train
    y_train = Y_train
    x_test = X_test
    y_test = Y_test
    session = tf.Session()

    number_rows = training_X.shape[0]
    number_col_x = training_X.shape[1]
    number_col_y = training_Y.shape[1]

    X = tf.placeholder('float', [None, number_col_x], name="X")
    Y = tf.placeholder('float', [None, number_col_y], name="Y")
    theta = tf.Variable(tf.random_normal([number_col_x, number_col_y],
                                         stddev=0.01),
                        name="Theta")
    lambda_val = tf.constant(lambda_value)

    y_predicted = tf.matmul(X, theta)

    with tf.name_scope('cost') as scope:
        cost_func = (tf.nn.l2_loss(y_predicted - Y) +
                     lambda_val * tf.nn.l2_loss(theta)) / float(batch_size)
        cost_summary = tf.summary.scalar('cost', cost_func)

    training_func = tf.train.GradientDescentOptimizer(alpha).minimize(
        cost_func)

    with tf.name_scope("test") as scope:
        correct_prediction = tf.subtract(
            tf.cast(1, 'float'), tf.reduce_mean(tf.subtract(y_predicted, Y)))
        accuracy = tf.cast(correct_prediction, "float")

    saver = tf.train.Saver()
    merged = tf.summary.merge_all()
    writer = tf.summary.FileWriter("/tmp", session.graph)

    init = tf.global_variables_initializer()
    session.run(init)

    for i in range(1, int(len(x_train) / batch_size)):
        session.run(training_func,
                    feed_dict={
                        X: x_train[i * batch_size:i * batch_size + batch_size],
                        Y: y_train[i * batch_size:i * batch_size + batch_size]
                    })
        if i % batch_size == 0:
            print("test accuracy %g" %
                  session.run(accuracy, feed_dict={
                      X: x_test,
                      Y: y_test
                  }))
        print("final test accuracy %g" %
              session.run(accuracy, feed_dict={
                  X: x_test,
                  Y: y_test
              }))

    prediction = y_predicted.eval(feed_dict={X: x_test}, session=session)

    mape = evaluation.mape(prediction, y_test)
    mean_mape = np.mean(np.array(mape))

    print("MAPE: %g" % mean_mape)

    session.close()
Example #3
0
import src.vector_gen.generate_VectorY as vecY
import src.misc.split_train_valid as split
import src.misc.paths as path
from sklearn import linear_model
import pandas as pd
import numpy as np
from sklearn.externals import joblib
from src.misc import evaluation as eval

np.set_printoptions(threshold=np.nan)

df = pd.read_csv(path.trajectories_training_file2)

#X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X,Y,test_size=0.2)
training, validation, testing = split.split_dataset(df)
X_train = vecX.generate_x_df(training)
Y_train = vecY.generate_VectorY_df(training)

X_test = vecX.generate_x_df(testing)
Y_test = vecY.generate_VectorY_df(testing)

clf = linear_model.MultiTaskElasticNet()
clf.fit(X_train, Y_train)

Y_pred = clf.predict(X_test)

error = eval.mape(Y_pred, Y_test)

print(error)
print(np.mean(np.array(error)))
Example #4
0
#joblib.dump(regr_multi_svr, 'regr_multi_svr_timeInformation.pkl')

# # evaluate

y_test_predict = regr_multi_svr.predict(x_test)

y_test_predict_df = pd.DataFrame(y_test_predict, columns=y_cols)
y_test_predict_df.head()

from sklearn import metrics

print(metrics.mean_absolute_error(y_test_predict, y_test))
print(metrics.mean_squared_error(y_test_predict, y_test))

import src.misc.evaluation as ev
mymape = ev.mape(y_test_predict, y_test)
print(np.mean(np.array(mymape)))

# #plot
# import matplotlib.pyplot as plt
# alpha=0.8
# lw=0.7
#
# fig, ax = plt.subplots(figsize = (26,8))
#
# ax.scatter(res.index.values, res['y_test'], color='green', label='y_test', s=0.8)
#
# ax.plot(res.index.values, res['y_pred_rbf'], color='red', label='y_pred_rbf', alpha=alpha, lw=lw)
# #plt.plot(res.index.values, res['y_pred_sigmoid'], color='blue', label='y_pred_sigmoid', alpha=alpha, lw=lw)
# ax.plot(res.index.values, res['y_pred_lin'], color='orange', label='y_pred_lin', alpha=alpha, lw=lw)
# #plt.plot(res.index.values, res['y_pred'], color='darkorange', label='y_pred_rbf')
Example #5
0
testing_X = pd.read_csv(
    "../../../../python/traffic-prediction/src/misc/splitting_csv_files/test_X.csv",
    index_col=0)

#-------------------------------------------------------------------------------
# Linear Model
LR = linear_model.LinearRegression()
LR.fit(training_X, training_Y)

print("\n Linear Regression: \n")
print("Coefficients b0.0,...,b0.6:")
print(LR.intercept_)
print("Coefficients b1.1,...,b6.6:")
print(LR.coef_)
print("R^2 score: %.5f" % LR.score(testing_X, testing_Y))
mape_LR = evaluation.mape(LR.predict(testing_X), testing_Y)
mean_mape_LR = np.mean(np.array(mape_LR))
print("MAPE's:")
print(mape_LR)
print("Mean of MAPE's: %.5f" % mean_mape_LR)

#-------------------------------------------------------------------------------
# Partial leas squares regression
pls = PLSRegression(n_components=2)
pls.fit(training_X, training_Y)

print("\n PLS Regression: \n")
print("Coefficients b1.1,..,b6.6:")
print(pls.coef_)
print("R^2 score: %.5f" % pls.score(testing_X, testing_Y))
mape_pls = evaluation.mape(pls.predict(testing_X), testing_Y)
Example #6
0
        epoch_loss += c

    [train_accuracy] = sess.run([cost_func],
                                feed_dict={
                                    x: x_batch,
                                    y: y_batch
                                })
    print("epoch %d, loss %d, training accuracy %g" %
          (epoch, epoch_loss, train_accuracy))
    s = sess.run(merged_summary, feed_dict={x: x_batch, y: y_batch})
    writer.add_summary(s, epoch)

print('Epoch', epoch, 'loss', epoch_loss)

# TODO FALSCH!!!???
prediction = y_pred.eval(feed_dict={x: testing_X}, session=sess)
mape = evaluation.mape(prediction, testing_Y)

print('mean MAPE\n', np.mean(mape))

print('MAPE\n', mape)

# In[7]:

#pd.DataFrame(prediction, index=testing_Y.index, columns=testing_Y.columns)

# In[8]:

#testing_Y
Example #7
0
from sklearn.multioutput import MultiOutputRegressor
import pandas as pd
import sklearn.svm as svm
from src.misc.evaluation import mape
import numpy as np

x_train = pd.read_csv('train_X.csv', index_col =0)
x_test = pd.read_csv('test_X.csv', index_col =0)
y_train = pd.read_csv('train_Y.csv', index_col =0)
y_test = pd.read_csv('test_Y.csv', index_col =0)

clf = svm.SVR(C=8, epsilon=0.0, cache_size=2000, kernel='rbf', tol=0.001, verbose=False)
regr_multi_svr = MultiOutputRegressor(clf, n_jobs=-1)
regr_multi_svr.fit(x_train, y_train)
y_test_predict = regr_multi_svr.predict(x_test)
mymape = mape(y_test_predict, y_test)
print(np.mean(np.array(mymape)))
 def test_get_simple_result(self):
     y_true = np.array([1, 2, 3, 4])
     y_pred = np.array([-1, -2, -3, -4])
     self.assertEqual(evaluation.mape(y_true, y_pred), 2)
 def self_test(self):
     y_true = np.array([1, 2, 3, 4])
     self.assertEqual(evaluation.mape(y_true, y_true), 0.0)