Example #1
0
def persistence(experiment="one_month_forecast", ):
    data_path = get_data_path()
    spatial_mask = data_path / "interim/boundaries_preprocessed/kenya_asal_mask.nc"
    spatial_mask = None
    predictor = Persistence(data_path,
                            experiment=experiment,
                            spatial_mask=spatial_mask)
    predictor.evaluate(save_preds=True)
def parsimonious(experiment="one_month_forecast", ):
    # if the working directory is alread ml_drought don't need ../data
    if Path(".").absolute().as_posix().split("/")[-1] == "ml_drought":
        data_path = Path("data")
    else:
        data_path = Path("../data")

    predictor = Persistence(data_path, experiment=experiment)
    predictor.evaluate(save_preds=True)
Example #3
0
def parsimonious(experiment='one_month_forecast', ):
    # if the working directory is alread ml_drought don't need ../data
    if Path('.').absolute().as_posix().split('/')[-1] == 'ml_drought':
        data_path = Path('data')
    else:
        data_path = Path('../data')

    predictor = Persistence(data_path, experiment=experiment)
    predictor.evaluate(save_preds=True)
Example #4
0
def persistence(experiment="one_month_forecast", ):
    predictor = Persistence(get_data_path(), experiment=experiment)
    predictor.evaluate(save_preds=True)
Example #5
0
true_da = read_true_data(data_dir=data_dir)

assert (persistence_pred_da.time == true_da.time).all()
assert (ealstm_pred_da.time == true_da.time).all()

# --------------------------------
# read in models
# --------------------------------
# READ in model (maybe want to do more predictions on historical data)
from src.models import load_model, Persistence

ealstm_path = data_dir / 'models/one_month_forecast/ealstm/model.pt'
assert ealstm_path.exists(), \
    'Expected the unzipped file to have the model.pt file saved'

persistence = Persistence(data_folder=data_dir)
ealstm = load_model(model_path=ealstm_path)

# --------------------------------
# Create comparison over time barchart
# --------------------------------

scores = annual_scores(
    data_path=data_dir,
    models=['ealstm', 'previous_month'],
    metrics=['rmse', 'r2'],
    verbose=False,
    to_dataframe=True
)

# create long format dataframe
Example #6
0
def run_models(data_path, experiment):
    # NOTE: this model is the same for all experiments
    print("Running persistence model")
    predictor = Persistence(data_path, experiment=experiment)
    predictor.evaluate(save_preds=True)

    # linear regression
    print(f"Running Linear Regression model: {experiment}")
    predictor = LinearRegression(data_path,
                                 experiment=experiment,
                                 include_pred_month=True,
                                 surrounding_pixels=1)
    predictor.train(num_epochs=10, early_stopping=3)

    # linear network
    print(f"Running Linear Neural Network model: {experiment}")
    predictor = LinearNetwork(
        data_folder=data_path,
        experiment=experiment,
        layer_sizes=[100],
        include_pred_month=True,
        surrounding_pixels=1,
    )
    predictor.train(num_epochs=10, early_stopping=3)
    predictor.evaluate(save_preds=True)
    predictor.save_model()

    # recurrent network
    print(f"Running RNN (LSTM) model: {experiment}")
    predictor = RecurrentNetwork(
        data_folder=data_path,
        hidden_size=128,
        experiment=experiment,
        include_pred_month=True,
        surrounding_pixels=1,
    )
    predictor.train(num_epochs=10, early_stopping=3)
    predictor.evaluate(save_preds=True)
    predictor.save_model()

    # EA LSTM
    print(f"Running Entity Aware LSTM model: {experiment}")
    predictor = EARecurrentNetwork(
        data_folder=data_path,
        hidden_size=128,
        experiment=experiment,
        include_pred_month=True,
        surrounding_pixels=1,
    )
    predictor.train(num_epochs=10, early_stopping=3)
    predictor.evaluate(save_preds=True)
    predictor.save_model()
Example #7
0
import xarray as xr

from pathlib import Path
from src.models import Persistence, LinearRegression

data_path = Path("data")

# high level api
predictor = Persistence(data_path)
predictor.evaluate(save_preds=True)

predictor = LinearRegression(data_path)
predictor.evaluate(save_preds=True)

# 1 LOAD_TRAIN_DATA get into the guts
x, y = predictor.load_train_arrays()

# 2 ds_folder_to_np (load x/y from the train data)
train_data_path = predictor.data_path / "features/train"
out_x, out_y = [], []
for subtrain in train_data_path.iterdir():
    if (subtrain / "x.nc").exists() and (subtrain / "y.nc").exists():
        arrays = predictor.ds_folder_to_np(subtrain,
                                           clear_nans=True,
                                           return_latlons=False)
        out_x.append(arrays.x)
        out_y.append(arrays.y)

# 3
x, y = xr.open_dataset(folder / "x.nc"), xr.open_dataset(folder / "y.nc")
x_np, y_np = x.to_array().values, y.to_array().values
Example #8
0
def persistence(experiment="one_month_forecast", include_yearly_aggs=False):
    predictor = Persistence(get_data_path(),
                            experiment=experiment,
                            include_yearly_aggs=include_yearly_aggs)
    predictor.evaluate(save_preds=True)