def train(): output_model_params() loadFile = True ifLoad, data = False, None if loadFile: ifLoad, data = load_file(cfg.processed_path, 'processed data', 'pickle') if not ifLoad or not loadFile: train_data_obj = Dataset(cfg.train_data_path, 'train') dev_data_obj = Dataset(cfg.dev_data_path, 'dev', dicts=train_data_obj.dicts) test_data_obj = Dataset(cfg.test_data_path, 'test', dicts=train_data_obj.dicts) save_file( { 'train_data_obj': train_data_obj, 'dev_data_obj': dev_data_obj, 'test_data_obj': test_data_obj }, cfg.processed_path) train_data_obj.save_dict(cfg.dict_path) else: train_data_obj = data['train_data_obj'] dev_data_obj = data['dev_data_obj'] test_data_obj = data['test_data_obj'] train_data_obj.filter_data() dev_data_obj.filter_data() test_data_obj.filter_data() emb_mat_token, emb_mat_glove = train_data_obj.emb_mat_token, train_data_obj.emb_mat_glove with tf.variable_scope(cfg.base_name) as scope: model = Model(emb_mat_token, emb_mat_glove, len(train_data_obj.dicts['token']), len(train_data_obj.dicts['char']), train_data_obj.max_lens['token'], scope.name) graphHandler = GraphHandler(model) evaluator = Evaluator(model) performRecoder = PerformRecoder(cfg.save_num) if cfg.gpu_mem is None: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem, allow_growth=True) graph_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) elif cfg.gpu_mem < 1.: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem) graph_config = tf.ConfigProto(gpu_options=gpu_options) else: gpu_options = tf.GPUOptions() graph_config = tf.ConfigProto(gpu_options=gpu_options) sess = tf.Session(config=graph_config) graphHandler.initialize(sess) # begin training steps_per_epoch = int( math.ceil(1.0 * train_data_obj.sample_num / cfg.train_batch_size)) num_steps = cfg.num_steps or steps_per_epoch * cfg.max_epoch global_step = 0 for sample_batch, batch_num, data_round, idx_b in train_data_obj.generate_batch_sample_iter( num_steps): global_step = sess.run(model.global_step) + 1 if_get_summary = global_step % (cfg.log_period or steps_per_epoch) == 0 loss, summary = model.step(sess, sample_batch, get_summary=if_get_summary, global_step_value=global_step) if global_step % 100 == 0: _logger.add( 'data round: %d: %d/%d, global step:%d -- loss_sl: %.4f, loss_rl: %.4f' % (data_round, idx_b, batch_num, global_step, loss[0], loss[1])) if if_get_summary: graphHandler.add_summary(summary, global_step) # Occasional evaluation evaluation = False if cfg.model_dir_suffix == 'test': if global_step % (cfg.eval_period or steps_per_epoch) == 0: evaluation = True elif is_base_training: if global_step > cfg.num_steps - 350000 and ( global_step % (cfg.eval_period or steps_per_epoch) == 0): evaluation = True else: if global_step % (cfg.eval_period or steps_per_epoch) == 0: if cfg.load_model: evaluation = True else: if global_step > 250000: evaluation = True if evaluation: # ---- dev ---- dev_loss, dev_accu, dev_perc = evaluator.get_evaluation( sess, dev_data_obj, global_step) _logger.add( '==> for dev, loss: %.4f %.4f, perc: %.4f, accuracy: %.4f' % (dev_loss[0], dev_loss[1], dev_perc, dev_accu)) # ---- test ---- test_loss, test_accu, test_perc = evaluator.get_evaluation( sess, test_data_obj, global_step) _logger.add( '~~> for test, loss: %.4f %.4f, perc: %.4f, accuracy: %.4f' % (test_loss[0], test_loss[1], test_perc, test_accu)) is_in_top, deleted_step = performRecoder.update_top_list( global_step, dev_accu, sess) this_epoch_time, mean_epoch_time = cfg.time_counter.update_data_round( data_round) if this_epoch_time is not None and mean_epoch_time is not None: _logger.add('##> this epoch time: %f, mean epoch time: %f' % (this_epoch_time, mean_epoch_time)) if is_base_training and global_step >= 200000 and global_step % 50000 == 0 and cfg.save_model: graphHandler.save(sess, global_step) _logger.writeToFile() do_analyse_snli_rl(_logger.path)
def train(): output_model_params() loadFile = True ifLoad, data = False, None if loadFile: ifLoad, data = load_file(cfg.processed_path, 'processed data', 'pickle') if not ifLoad or not loadFile: train_data_obj = Dataset(cfg.train_data_path, 'train') dev_data_obj = Dataset(cfg.dev_data_path, 'dev', train_data_obj.dicts) save_file( { 'train_data_obj': train_data_obj, 'dev_data_obj': dev_data_obj }, cfg.processed_path) else: train_data_obj = data['train_data_obj'] dev_data_obj = data['dev_data_obj'] emb_mat_token, emb_mat_glove = train_data_obj.emb_mat_token, train_data_obj.emb_mat_glove output_cls_num = len( train_data_obj.dicts['sub_cls']) if cfg.fine_grained else len( train_data_obj.dicts['cls']) with tf.variable_scope(network_type) as scope: if network_type in model_set: model = Model(emb_mat_token, emb_mat_glove, len(train_data_obj.dicts['token']), len(train_data_obj.dicts['char']), train_data_obj.max_lens['token'], output_cls_num, scope=scope.name) graphHandler = GraphHandler(model) evaluator = Evaluator(model) performRecoder = PerformRecoder(3) if cfg.gpu_mem is None: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem, allow_growth=True) graph_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) else: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem) graph_config = tf.ConfigProto(gpu_options=gpu_options) # graph_config.gpu_options.allow_growth = True sess = tf.Session(config=graph_config) graphHandler.initialize(sess) # begin training steps_per_epoch = int( math.ceil(1.0 * train_data_obj.sample_num / cfg.train_batch_size)) num_steps = cfg.num_steps or steps_per_epoch * cfg.max_epoch global_step = 0 for sample_batch, batch_num, data_round, idx_b in train_data_obj.generate_batch_sample_iter( num_steps): global_step = sess.run(model.global_step) + 1 if_get_summary = global_step % (cfg.log_period or steps_per_epoch) == 0 loss, summary, train_op = model.step(sess, sample_batch, get_summary=if_get_summary) if global_step % 100 == 0: _logger.add('data round: %d: %d/%d, global step:%d -- loss: %.4f' % (data_round, idx_b, batch_num, global_step, loss)) if if_get_summary: graphHandler.add_summary(summary, global_step) # Occasional evaluation if global_step % (cfg.eval_period or steps_per_epoch) == 0: # ---- dev ---- dev_loss, dev_accu = evaluator.get_evaluation( sess, dev_data_obj, global_step) _logger.add('==> for dev, loss: %.4f, accuracy: %.4f' % (dev_loss, dev_accu)) is_in_top, deleted_step = performRecoder.update_top_list( global_step, dev_accu, sess) this_epoch_time, mean_epoch_time = cfg.time_counter.update_data_round( data_round) # if this_epoch_time is not None and mean_epoch_time is not None: # _logger.add('##> this epoch time: %f, mean epoch time: %f' % (this_epoch_time, mean_epoch_time)) do_analyse_qc(_logger.path)
def train(): n_fold_val = 10 output_model_params() loadFile = True ifLoad, data = False, None if loadFile: ifLoad, data = load_file(cfg.processed_path, 'processed data', 'pickle') if not ifLoad or not loadFile: data_obj = Dataset(cfg.data_path, cfg.dataset_type) save_file({'data_obj': data_obj}, cfg.processed_path) else: data_obj = data['data_obj'] data_obj.split_dataset_to_blocks(n_fold_val) # for block len if cfg.block_len is None and cfg.context_fusion_method == 'block': _logger.add() _logger.add('calculating block length for dataset') statistic = data_obj.get_statistic() expected_n = statistic['mean'] + statistic['std'] * math.sqrt( 2. * math.log(1. * cfg.train_batch_size)) dy_block_len = math.ceil(math.pow(2 * expected_n, 1.0 / 3)) + 1 # fixme: change length cfg.block_len = dy_block_len _logger.add('block length is %d' % dy_block_len) emb_mat_token, emb_mat_glove = data_obj.emb_mat_token, data_obj.emb_mat_glove output_cls_num = data_obj.class_num steps_per_epoch = int( math.ceil(1.0 * data_obj.sample_num / cfg.train_batch_size)) num_steps = cfg.num_steps or steps_per_epoch * cfg.max_epoch dev_performance_list = [] for n_th_fold in range(n_fold_val): time_accu_recorder = TimeAccuRecorder(data_obj.dataset_type, n_th_fold, cfg.answer_dir) g = tf.Graph() with g.as_default(): with tf.variable_scope("%s_%s" % (cfg.dataset_type, network_type)) as scope: if network_type in model_set: model = Model(emb_mat_token, emb_mat_glove, len(data_obj.dicts['token']), len(data_obj.dicts['char']), data_obj.max_lens['token'], output_cls_num, scope=scope.name) else: assert RuntimeError graphHandler = GraphHandler(model) evaluator = Evaluator(model) performRecoder = PerformRecoder(1) if cfg.gpu_mem is None: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem, allow_growth=True) graph_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) else: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem) graph_config = tf.ConfigProto(gpu_options=gpu_options) # graph_config.gpu_options.allow_growth = True sess = tf.Session(config=graph_config) graphHandler.initialize(sess) global_step = 0 for sample_batch, batch_num, data_round, idx_b in \ data_obj.generate_batch_sample_iter(n_th_fold, num_steps): global_step = sess.run(model.global_step) + 1 if_get_summary = global_step % (cfg.log_period or steps_per_epoch) == 0 loss, summary, train_op = model.step( sess, sample_batch, get_summary=if_get_summary) # if global_step % 100 == 0: _logger.add('cross validation index: %d' % n_th_fold) _logger.add( 'data round: %d: %d/%d, global step:%d -- loss: %.4f' % (data_round, idx_b, batch_num, global_step, loss)) if if_get_summary: graphHandler.add_summary(summary, global_step) # Occasional evaluation if global_step % (cfg.eval_period or steps_per_epoch) == 0: # ---- dev ---- dev_loss, dev_accu = evaluator.get_evaluation( sess, data_obj, n_th_fold, global_step) _logger.add('==> for dev, loss: %.4f, accuracy: %.4f' % (dev_loss, dev_accu)) # record time vs. accuracy time_accu_recorder.add_data( cfg.time_counter.global_training_time, dev_accu) is_in_top, deleted_step = performRecoder.update_top_list( global_step, dev_accu, sess) this_epoch_time, mean_epoch_time = cfg.time_counter.update_data_round( data_round) # if this_epoch_time is not None and mean_epoch_time is not None: # _logger.add('##> this epoch time: %f, mean epoch time: %f' % (this_epoch_time, mean_epoch_time)) dev_performance_list.append(performRecoder.best_result) _logger.add("%d th x val accuracy is %.4f" % (n_th_fold, performRecoder.best_result)) time_accu_recorder.save_to_file() if len(dev_performance_list) > 0: dev_performance_array = np.array(dev_performance_list) xval_average = np.mean(dev_performance_array) xval_std = np.std(dev_performance_array) else: xval_average = 0 xval_std = 0 dev_performance_list_str = [str(elem) for elem in dev_performance_list] _logger.add("all accuracies: %s" % ', '.join(dev_performance_list_str)) _logger.add('%d fold cross validation average accuracy is %f, standard variance is %f' % \ (n_fold_val, xval_average, xval_std)) _logger.writeToFile()
def train(): output_model_params() loadFile = True ifLoad, data = False, None if loadFile: ifLoad, data = load_file(cfg.processed_path, 'data', 'pickle') if not ifLoad or not loadFile: data_object = Dataset(cfg.train_data_path, cfg.dev_data_path) data_object.save_dict(cfg.dict_path) save_file({'data_obj': data_object}, cfg.processed_path) else: data_object = data['data_obj'] emb_mat_token, emb_mat_glove = data_object.emb_mat_token, data_object.emb_mat_glove with tf.variable_scope(network_type) as scope: if network_type in model_set: model = Model(emb_mat_token, emb_mat_glove, len(data_object.dicts['token']), len(data_object.dicts['char']), data_object.max_lens['token'], scope.name) graphHandler = GraphHandler(model) evaluator = Evaluator(model) performRecoder = PerformRecoder(5) if cfg.gpu_mem < 1.: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem, allow_growth=True) else: gpu_options = tf.GPUOptions() graph_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) sess = tf.Session(config=graph_config) graphHandler.initialize(sess) # begin training steps_per_epoch = int( math.ceil(1.0 * len(data_object.digitized_train_data_list) / cfg.train_batch_size)) num_steps = steps_per_epoch * cfg.max_epoch or cfg.num_steps global_step = 0 # debug or not if cfg.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess) for sample_batch, batch_num, data_round, idx_b in Dataset.generate_batch_sample_iter( data_object.digitized_train_data_list, num_steps): global_step = sess.run(model.global_step) + 1 if_get_summary = global_step % (cfg.log_period or steps_per_epoch) == 0 loss, summary, train_op = model.step(sess, sample_batch, get_summary=if_get_summary) if global_step % 10 == 0: _logger.add('data round: %d: %d/%d, global step:%d -- loss: %.4f' % (data_round, idx_b, batch_num, global_step, loss)) if if_get_summary: graphHandler.add_summary(summary, global_step) # Occasional evaluation if global_step % (cfg.eval_period or steps_per_epoch) == 0: # ---- dev ---- dev_loss, dev_accu = evaluator.get_evaluation( sess, data_object.digitized_dev_data_list, 'dev', global_step) _logger.add('==> for dev, loss: %.4f, accuracy: %.4f' % (dev_loss, dev_accu)) # ---- test ---- if cfg.test_data_name != None: test_loss, test_accu = evaluator.get_evaluation( sess, data_object.digitized_test_data_list, 'test', global_step) _logger.add('~~> for test, loss: %.4f, accuracy: %.4f' % (test_loss, test_accu)) is_in_top, deleted_step = performRecoder.update_top_list( global_step, dev_accu, sess) this_epoch_time, mean_epoch_time = cfg.time_counter.update_data_round( data_round) if this_epoch_time is not None and mean_epoch_time is not None: _logger.add('##> this epoch time: %f, mean epoch time: %f' % (this_epoch_time, mean_epoch_time))
def train(): output_model_params() loadFile = True ifLoad, data = load_file(cfg.processed_path, 'processed data', 'pickle') if not ifLoad or not loadFile: train_data_obj = Dataset(cfg.train_dataset_path, data_type='train') dev_data_obj = Dataset(cfg.dev_dataset_path, data_type='dev', dicts=train_data_obj.dicts) save_file({ 'train_data': train_data_obj, 'dev_data': dev_data_obj }, cfg.processed_path) else: train_data_obj = data['train_data'] dev_data_obj = data['dev_data'] train_data_obj.filter_data() emb_mat_token, emb_mat_glove = train_data_obj.emb_mat_token, train_data_obj.emb_mat_glove # for block len if cfg.block_len is None and cfg.context_fusion_method == 'block': _logger.add() _logger.add('calculating block length for dataset') statistic = train_data_obj.get_statistic() expected_n = statistic['mean'] + statistic['std'] * math.sqrt( 2. * math.log(1. * cfg.train_batch_size)) dy_block_len = math.ceil(math.pow(2 * expected_n, 1.0 / 3)) + 1 # fixme: change length cfg.block_len = dy_block_len _logger.add('block length is %d' % dy_block_len) with tf.variable_scope(network_type) as scope: model = Model(emb_mat_token, emb_mat_glove, len(train_data_obj.dicts['token']), cfg.word_embedding_length, cfg.hidden_units_num, scope.name) graph_handler = GraphHandler(model) evaluator = Evaluator(model) perform_recoder = PerformRecoder(3) if cfg.gpu_mem is None: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem, allow_growth=True) graph_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) else: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem) graph_config = tf.ConfigProto(gpu_options=gpu_options) sess = tf.Session(config=graph_config) graph_handler.initialize(sess) # begin training steps_per_epoch = int( math.ceil(1.0 * train_data_obj.sample_num / cfg.train_batch_size)) num_steps = cfg.num_steps or steps_per_epoch * cfg.max_epoch global_step = 0 for sample_batch, batch_num, data_round, idx_b in train_data_obj.generate_batch_sample_iter( num_steps): global_step = sess.run(model.global_step) + 1 if_get_summary = global_step % (cfg.log_period or steps_per_epoch) == 0 loss, summary, train_op = model.step(sess, sample_batch, get_summary=if_get_summary) if global_step % 100 == 0: _logger.add('data round: %d: %d/%d, global step:%d -- loss: %.4f' % (data_round, idx_b, batch_num, global_step, loss)) if if_get_summary: graph_handler.add_summary(summary, global_step) # period evaluation if (global_step > (cfg.num_steps - 20000) or cfg.model_dir_suffix == 'test') and \ global_step % (cfg.eval_period or steps_per_epoch) == 0: # ---- dev ---- dev_loss, dev_accu = evaluator.get_evaluation( sess, dev_data_obj, global_step) _logger.add('==> for dev, loss: %.4f, accuracy: %.4f' % (dev_loss, dev_accu)) is_in_top, deleted_step = perform_recoder.update_top_list( global_step, dev_accu, sess) this_epoch_time, mean_epoch_time = cfg.time_counter.update_data_round( data_round) if this_epoch_time is not None and mean_epoch_time is not None: _logger.add('##> this epoch time: %f, mean epoch time: %f' % (this_epoch_time, mean_epoch_time)) _logger.writeToFile() do_analysis_squad_sim(_logger.path)
def train(): output_model_params() loadFile = True ifLoad, data = False, None if loadFile: ifLoad, data = load_file(cfg.processed_path, 'processed data', 'pickle') if not ifLoad or not loadFile: train_data_obj = Dataset(cfg.train_data_path, 'train') dev_data_obj = Dataset(cfg.dev_data_path, 'dev', dicts=train_data_obj.dicts) test_data_obj = Dataset(cfg.test_data_path, 'test', dicts=train_data_obj.dicts) save_file( { 'train_data_obj': train_data_obj, 'dev_data_obj': dev_data_obj, 'test_data_obj': test_data_obj }, cfg.processed_path) train_data_obj.save_dict(cfg.dict_path) else: train_data_obj = data['train_data_obj'] dev_data_obj = data['dev_data_obj'] test_data_obj = data['test_data_obj'] train_data_obj.filter_data() dev_data_obj.filter_data() test_data_obj.filter_data() emb_mat_token, emb_mat_glove = train_data_obj.emb_mat_token, train_data_obj.emb_mat_glove with tf.variable_scope(network_type) as scope: model = Model(emb_mat_token, emb_mat_glove, len(train_data_obj.dicts['token']), len(train_data_obj.dicts['char']), train_data_obj.max_lens['token'], scope.name) graphHandler = GraphHandler(model) evaluator = Evaluator(model) performRecoder = PerformRecoder(5) sess = tf.Session(config=sess_config_gene(cfg.gpu_mem)) graphHandler.initialize(sess) # begin training steps_per_epoch = int( math.ceil(1.0 * train_data_obj.sample_num / cfg.train_batch_size)) num_steps = cfg.num_steps or steps_per_epoch * cfg.max_epoch global_step = 0 for sample_batch, batch_num, data_round, idx_b in train_data_obj.generate_batch_sample_iter( num_steps): global_step = sess.run(model.global_step) + 1 if_get_summary = global_step % (cfg.log_period or steps_per_epoch) == 0 loss, summary, train_op = model.step(sess, sample_batch, get_summary=if_get_summary) if global_step % 100 == 0: _logger.add('data round: %d: %d/%d, global step:%d -- loss: %.4f' % (data_round, idx_b, batch_num, global_step, loss)) if if_get_summary: graphHandler.add_summary(summary, global_step) # # occasional saving # if global_step % (cfg.save_period or steps_per_epoch) == 0: # graphHandler.save(sess, global_step) # Occasional evaluation if (global_step > (cfg.num_steps - 300000) or cfg.model_dir_prefix=='test') and \ global_step % (cfg.eval_period or steps_per_epoch) == 0: # ---- dev ---- dev_loss, dev_accu = evaluator.get_evaluation( sess, dev_data_obj, global_step) _logger.add('==> for dev, loss: %.4f, accuracy: %.4f' % (dev_loss, dev_accu)) # ---- test ---- test_loss, test_accu = evaluator.get_evaluation( sess, test_data_obj, global_step) _logger.add('~~> for test, loss: %.4f, accuracy: %.4f' % (test_loss, test_accu)) is_in_top, deleted_step = performRecoder.update_top_list( global_step, dev_accu, sess) this_epoch_time, mean_epoch_time = cfg.time_counter.update_data_round( data_round) if this_epoch_time is not None and mean_epoch_time is not None: _logger.add('##> this epoch time: %f, mean epoch time: %f' % (this_epoch_time, mean_epoch_time)) # if global_step % (cfg.save_period or steps_per_epoch) != 0: # graphHandler.save(sess, global_step) _logger.writeToFile() do_analyse_snli(_logger.path)
def train(): output_model_params() loadFile = True ifLoad, data = False, None if loadFile: ifLoad, data = load_file(cfg.processed_path, 'processed data', 'pickle') if not ifLoad or not loadFile: raw_data = RawDataProcessor(cfg.data_dir) train_data_list = raw_data.get_data_list('train') dev_data_list = raw_data.get_data_list('dev') test_data_list = raw_data.get_data_list('test') train_data_obj = Dataset(train_data_list, 'train') dev_data_obj = Dataset(dev_data_list, 'dev', train_data_obj.dicts) test_data_obj = Dataset(test_data_list, 'test', train_data_obj.dicts) save_file( { 'train_data_obj': train_data_obj, 'dev_data_obj': dev_data_obj, 'test_data_obj': test_data_obj }, cfg.processed_path) train_data_obj.save_dict(cfg.dict_path) else: train_data_obj = data['train_data_obj'] dev_data_obj = data['dev_data_obj'] test_data_obj = data['test_data_obj'] train_data_obj.filter_data(cfg.only_sentence, cfg.fine_grained) dev_data_obj.filter_data(True, cfg.fine_grained) test_data_obj.filter_data(True, cfg.fine_grained) # for block len if cfg.block_len is None and cfg.context_fusion_method == 'block': _logger.add() _logger.add('calculating block length for dataset') statistic = train_data_obj.get_statistic() expected_n = statistic['mean'] + statistic['std'] * math.sqrt( 2. * math.log(1. * cfg.train_batch_size)) dy_block_len = math.ceil(math.pow(2 * expected_n, 1.0 / 3)) + 1 # fixme: change length cfg.block_len = dy_block_len _logger.add('block length is %d' % dy_block_len) emb_mat_token, emb_mat_glove = train_data_obj.emb_mat_token, train_data_obj.emb_mat_glove with tf.variable_scope(network_type) as scope: if network_type in model_set: model = Model(emb_mat_token, emb_mat_glove, len(train_data_obj.dicts['token']), len(train_data_obj.dicts['char']), train_data_obj.max_lens['token'], scope.name) graphHandler = GraphHandler(model) evaluator = Evaluator(model) performRecoder = PerformRecoder(3) if cfg.gpu_mem is None: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem, allow_growth=True) graph_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) else: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem) graph_config = tf.ConfigProto(gpu_options=gpu_options) # graph_config.gpu_options.allow_growth = True sess = tf.Session(config=graph_config) graphHandler.initialize(sess) # begin training steps_per_epoch = int( math.ceil(1.0 * train_data_obj.sample_num / cfg.train_batch_size)) num_steps = cfg.num_steps or steps_per_epoch * cfg.max_epoch global_step = 0 for sample_batch, batch_num, data_round, idx_b in train_data_obj.generate_batch_sample_iter( num_steps): global_step = sess.run(model.global_step) + 1 if_get_summary = global_step % (cfg.log_period or steps_per_epoch) == 0 loss, summary, train_op = model.step(sess, sample_batch, get_summary=if_get_summary) if global_step % 100 == 0: _logger.add('data round: %d: %d/%d, global step:%d -- loss: %.4f' % (data_round, idx_b, batch_num, global_step, loss)) if if_get_summary: graphHandler.add_summary(summary, global_step) # Occasional evaluation if global_step % (cfg.eval_period or steps_per_epoch) == 0: # ---- dev ---- dev_loss, dev_accu, dev_sent_accu = evaluator.get_evaluation( sess, dev_data_obj, global_step) _logger.add( '==> for dev, loss: %.4f, accuracy: %.4f, sentence accuracy: %.4f' % (dev_loss, dev_accu, dev_sent_accu)) # ---- test ---- test_loss, test_accu, test_sent_accu = evaluator.get_evaluation( sess, test_data_obj, global_step) _logger.add( '~~> for test, loss: %.4f, accuracy: %.4f, sentence accuracy: %.4f' % (test_loss, test_accu, test_sent_accu)) # ---- train ---- # train_loss, train_accu, train_sent_accu = evaluator.get_evaluation( # sess, train_data_obj, global_step # ) # _logger.add('--> for train, loss: %.4f, accuracy: %.4f, sentence accuracy: %.4f' % # (train_loss, train_accu, train_sent_accu)) is_in_top, deleted_step = performRecoder.update_top_list( global_step, dev_accu, sess) if is_in_top and global_step > 30000: # todo-ed: delete me to run normally # evaluator.get_evaluation_file_output(sess, dev_data_obj, global_step, deleted_step) evaluator.get_evaluation_file_output(sess, test_data_obj, global_step, deleted_step) this_epoch_time, mean_epoch_time = cfg.time_counter.update_data_round( data_round) if this_epoch_time is not None and mean_epoch_time is not None: _logger.add('##> this epoch time: %f, mean epoch time: %f' % (this_epoch_time, mean_epoch_time)) # finally save # if global_step % (cfg.save_period or steps_per_epoch) != 0: # graphHandler.save(sess, global_step) do_analyse_sst(_logger.path)