class Solver(BaseSolver): ''' Solver for training''' def __init__(self, config, paras, mode): super().__init__(config, paras, mode) # Logger settings self.best_wer = {'att': 3.0, 'ctc': 3.0} # Curriculum learning affects data loader self.curriculum = self.config['hparas']['curriculum'] def fetch_data(self, data): ''' Move data to device and compute text seq. length''' _, feat, feat_len, txt = data feat = feat.to(self.device) feat_len = feat_len.to(self.device) txt = txt.to(self.device) txt_len = torch.sum(txt != 0, dim=-1) return feat, feat_len, txt, txt_len def load_data(self): ''' Load data for training/validation, store tokenizer and input/output shape''' self.tr_set, self.dv_set, self.feat_dim, self.vocab_size, self.tokenizer, msg = \ load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, self.curriculum > 0, **self.config['data']) self.verbose(msg) def set_model(self): ''' Setup ASR model and optimizer ''' # Model init_adadelta = self.config['hparas']['optimizer'] == 'Adadelta' self.model = ASR(self.feat_dim, self.vocab_size, init_adadelta, **self.config['model']).to(self.device) self.verbose(self.model.create_msg()) model_paras = [{'params': self.model.parameters()}] # Losses self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0) # Note: zero_infinity=False is unstable? self.ctc_loss = torch.nn.CTCLoss(blank=0, zero_infinity=False) # Plug-ins self.emb_fuse = False self.emb_reg = ('emb' in self.config) and (self.config['emb']['enable']) if self.emb_reg: from src.plugin import EmbeddingRegularizer self.emb_decoder = EmbeddingRegularizer( self.tokenizer, self.model.dec_dim, **self.config['emb']).to(self.device) model_paras.append({'params': self.emb_decoder.parameters()}) self.emb_fuse = self.emb_decoder.apply_fuse if self.emb_fuse: self.seq_loss = torch.nn.NLLLoss(ignore_index=0) self.verbose(self.emb_decoder.create_msg()) # Optimizer self.optimizer = Optimizer(model_paras, **self.config['hparas']) self.verbose(self.optimizer.create_msg()) # Enable AMP if needed self.enable_apex() # Automatically load pre-trained model if self.paras.load is given self.load_ckpt() # ToDo: other training methods def exec(self): ''' Training End-to-end ASR system ''' self.verbose('Total training steps {}.'.format( human_format(self.max_step))) ctc_loss, att_loss, emb_loss = None, None, None n_epochs = 0 self.timer.set() while self.step < self.max_step: # Renew dataloader to enable random sampling if self.curriculum > 0 and n_epochs == self.curriculum: self.verbose( 'Curriculum learning ends after {} epochs, starting random sampling.' .format(n_epochs)) self.tr_set, _, _, _, _, _ = \ load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, False, **self.config['data']) for data in self.tr_set: # Pre-step : update tf_rate/lr_rate and do zero_grad tf_rate = self.optimizer.pre_step(self.step) total_loss = 0 # Fetch data feat, feat_len, txt, txt_len = self.fetch_data(data) self.timer.cnt('rd') # Forward model # Note: txt should NOT start w/ <sos> ctc_output, encode_len, att_output, att_align, dec_state = \ self.model(feat, feat_len, max(txt_len), tf_rate=tf_rate, teacher=txt, get_dec_state=self.emb_reg) # Plugins if self.emb_reg: emb_loss, fuse_output = self.emb_decoder(dec_state, att_output, label=txt) total_loss += self.emb_decoder.weight * emb_loss # Compute all objectives if ctc_output is not None: if self.paras.cudnn_ctc: ctc_loss = self.ctc_loss( ctc_output.transpose(0, 1), txt.to_sparse().values().to(device='cpu', dtype=torch.int32), [ctc_output.shape[1]] * len(ctc_output), txt_len.cpu().tolist()) else: ctc_loss = self.ctc_loss(ctc_output.transpose(0, 1), txt, encode_len, txt_len) total_loss += ctc_loss * self.model.ctc_weight if att_output is not None: b, t, _ = att_output.shape att_output = fuse_output if self.emb_fuse else att_output att_loss = self.seq_loss(att_output.view(b * t, -1), txt.view(-1)) total_loss += att_loss * (1 - self.model.ctc_weight) self.timer.cnt('fw') # Backprop grad_norm = self.backward(total_loss) self.step += 1 # Logger if (self.step == 1) or (self.step % self.PROGRESS_STEP == 0): self.progress( 'Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'. format(total_loss.cpu().item(), grad_norm, self.timer.show())) self.write_log('loss', { 'tr_ctc': ctc_loss, 'tr_att': att_loss }) self.write_log('emb_loss', {'tr': emb_loss}) self.write_log( 'wer', { 'tr_att': cal_er(self.tokenizer, att_output, txt), 'tr_ctc': cal_er(self.tokenizer, ctc_output, txt, ctc=True) }) if self.emb_fuse: if self.emb_decoder.fuse_learnable: self.write_log( 'fuse_lambda', {'emb': self.emb_decoder.get_weight()}) self.write_log('fuse_temp', {'temp': self.emb_decoder.get_temp()}) # Validation if (self.step == 1) or (self.step % self.valid_step == 0): self.validate() # End of step # https://github.com/pytorch/pytorch/issues/13246#issuecomment-529185354 torch.cuda.empty_cache() self.timer.set() if self.step > self.max_step: break n_epochs += 1 self.log.close() def validate(self): # Eval mode self.model.eval() if self.emb_decoder is not None: self.emb_decoder.eval() dev_wer = {'att': [], 'ctc': []} for i, data in enumerate(self.dv_set): self.progress('Valid step - {}/{}'.format(i + 1, len(self.dv_set))) # Fetch data feat, feat_len, txt, txt_len = self.fetch_data(data) # Forward model with torch.no_grad(): ctc_output, encode_len, att_output, att_align, dec_state = \ self.model(feat, feat_len, int(max(txt_len)*self.DEV_STEP_RATIO), emb_decoder=self.emb_decoder) dev_wer['att'].append(cal_er(self.tokenizer, att_output, txt)) dev_wer['ctc'].append( cal_er(self.tokenizer, ctc_output, txt, ctc=True)) # Show some example on tensorboard if i == len(self.dv_set) // 2: for i in range(min(len(txt), self.DEV_N_EXAMPLE)): if self.step == 1: self.write_log('true_text{}'.format(i), self.tokenizer.decode(txt[i].tolist())) if att_output is not None: self.write_log( 'att_align{}'.format(i), feat_to_fig(att_align[i, 0, :, :].cpu().detach())) self.write_log( 'att_text{}'.format(i), self.tokenizer.decode( att_output[i].argmax(dim=-1).tolist())) if ctc_output is not None: self.write_log( 'ctc_text{}'.format(i), self.tokenizer.decode( ctc_output[i].argmax(dim=-1).tolist(), ignore_repeat=True)) # Ckpt if performance improves for task in ['att', 'ctc']: dev_wer[task] = sum(dev_wer[task]) / len(dev_wer[task]) if dev_wer[task] < self.best_wer[task]: self.best_wer[task] = dev_wer[task] self.save_checkpoint('best_{}.pth'.format(task), 'wer', dev_wer[task]) self.write_log('wer', {'dv_' + task: dev_wer[task]}) self.save_checkpoint('latest.pth', 'wer', dev_wer['att'], show_msg=False) # Resume training self.model.train() if self.emb_decoder is not None: self.emb_decoder.train()
class Solver(BaseSolver): ''' Solver for training''' def __init__(self, config, paras, mode): super().__init__(config, paras, mode) # Curriculum learning affects data loader self.curriculum = self.config['hparas']['curriculum'] self.val_mode = self.config['hparas']['val_mode'].lower() self.WER = 'per' if self.val_mode == 'per' else 'wer' def fetch_data(self, data, train=False): ''' Move data to device and compute text seq. length''' # feat: B x T x D _, feat, feat_len, txt = data feat = feat.to(self.device) feat_len = feat_len.to(self.device) txt = txt.to(self.device) txt_len = torch.sum(txt != 0, dim=-1) return feat, feat_len, txt, txt_len def load_data(self): ''' Load data for training/validation, store tokenizer and input/output shape''' self.tr_set, self.dv_set, self.feat_dim, self.vocab_size, self.tokenizer, msg = \ load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, self.curriculum>0, **self.config['data']) self.verbose(msg) # Dev set sames self.dv_names = [] if type(self.dv_set) is list: for ds in self.config['data']['corpus']['dev_split']: self.dv_names.append(ds[0]) else: self.dv_names = self.config['data']['corpus']['dev_split'][0] # Logger settings if type(self.dv_names) is str: self.best_wer = { 'att': { self.dv_names: 3.0 }, 'ctc': { self.dv_names: 3.0 } } else: self.best_wer = {'att': {}, 'ctc': {}} for name in self.dv_names: self.best_wer['att'][name] = 3.0 self.best_wer['ctc'][name] = 3.0 def set_model(self): ''' Setup ASR model and optimizer ''' # Model self.model = ASR(self.feat_dim, self.vocab_size, **self.config['model']).to(self.device) self.verbose(self.model.create_msg()) model_paras = [{'params': self.model.parameters()}] # Losses self.seq_loss = torch.nn.CrossEntropyLoss(ignore_index=0) self.ctc_loss = torch.nn.CTCLoss( blank=0, zero_infinity=False) # Note: zero_infinity=False is unstable? # Plug-ins self.emb_fuse = False self.emb_reg = ('emb' in self.config) and (self.config['emb']['enable']) if self.emb_reg: from src.plugin import EmbeddingRegularizer self.emb_decoder = EmbeddingRegularizer( self.tokenizer, self.model.dec_dim, **self.config['emb']).to(self.device) model_paras.append({'params': self.emb_decoder.parameters()}) self.emb_fuse = self.emb_decoder.apply_fuse if self.emb_fuse: self.seq_loss = torch.nn.NLLLoss(ignore_index=0) self.verbose(self.emb_decoder.create_msg()) # Optimizer self.optimizer = Optimizer(model_paras, **self.config['hparas']) self.verbose(self.optimizer.create_msg()) # Enable AMP if needed self.enable_apex() # Transfer Learning if self.transfer_learning: self.verbose('Apply transfer learning: ') self.verbose(' Train encoder layers: {}'.format( self.train_enc)) self.verbose(' Train decoder: {}'.format( self.train_dec)) self.verbose(' Save name: {}'.format( self.save_name)) # Automatically load pre-trained model if self.paras.load is given self.load_ckpt() def exec(self): ''' Training End-to-end ASR system ''' self.verbose('Total training steps {}.'.format( human_format(self.max_step))) if self.transfer_learning: self.model.encoder.fix_layers(self.fix_enc) if self.fix_dec and self.model.enable_att: self.model.decoder.fix_layers() if self.fix_dec and self.model.enable_ctc: self.model.fix_ctc_layer() n_epochs = 0 self.timer.set() while self.step < self.max_step: ctc_loss, att_loss, emb_loss = None, None, None # Renew dataloader to enable random sampling if self.curriculum > 0 and n_epochs == self.curriculum: self.verbose( 'Curriculum learning ends after {} epochs, starting random sampling.' .format(n_epochs)) self.tr_set, _, _, _, _, _ = \ load_dataset(self.paras.njobs, self.paras.gpu, self.paras.pin_memory, False, **self.config['data']) for data in self.tr_set: # Pre-step : update tf_rate/lr_rate and do zero_grad tf_rate = self.optimizer.pre_step(self.step) total_loss = 0 # Fetch data feat, feat_len, txt, txt_len = self.fetch_data(data, train=True) self.timer.cnt('rd') # Forward model # Note: txt should NOT start w/ <sos> ctc_output, encode_len, att_output, att_align, dec_state = \ self.model( feat, feat_len, max(txt_len), tf_rate=tf_rate, teacher=txt, get_dec_state=self.emb_reg) # Clear not used objects del att_align # Plugins if self.emb_reg: emb_loss, fuse_output = self.emb_decoder(dec_state, att_output, label=txt) total_loss += self.emb_decoder.weight * emb_loss else: del dec_state # Compute all objectives if ctc_output is not None: if self.paras.cudnn_ctc: ctc_loss = self.ctc_loss( ctc_output.transpose(0, 1), txt.to_sparse().values().to(device='cpu', dtype=torch.int32), [ctc_output.shape[1]] * len(ctc_output), #[int(encode_len.max()) for _ in encode_len], txt_len.cpu().tolist()) else: ctc_loss = self.ctc_loss(ctc_output.transpose(0, 1), txt, encode_len, txt_len) total_loss += ctc_loss * self.model.ctc_weight del encode_len if att_output is not None: b, t, _ = att_output.shape att_output = fuse_output if self.emb_fuse else att_output att_loss = self.seq_loss(att_output.view(b * t, -1), txt.view(-1)) # Sum each uttr and devide by length then mean over batch # att_loss = torch.mean(torch.sum(att_loss.view(b,t),dim=-1)/torch.sum(txt!=0,dim=-1).float()) total_loss += att_loss * (1 - self.model.ctc_weight) self.timer.cnt('fw') # Backprop grad_norm = self.backward(total_loss) self.step += 1 # Logger if (self.step == 1) or (self.step % self.PROGRESS_STEP == 0): self.progress('Tr stat | Loss - {:.2f} | Grad. Norm - {:.2f} | {}'\ .format(total_loss.cpu().item(),grad_norm,self.timer.show())) self.write_log('emb_loss', {'tr': emb_loss}) if att_output is not None: self.write_log('loss', {'tr_att': att_loss}) self.write_log(self.WER, { 'tr_att': cal_er(self.tokenizer, att_output, txt) }) self.write_log( 'cer', { 'tr_att': cal_er(self.tokenizer, att_output, txt, mode='cer') }) if ctc_output is not None: self.write_log('loss', {'tr_ctc': ctc_loss}) self.write_log( self.WER, { 'tr_ctc': cal_er( self.tokenizer, ctc_output, txt, ctc=True) }) self.write_log( 'cer', { 'tr_ctc': cal_er(self.tokenizer, ctc_output, txt, mode='cer', ctc=True) }) self.write_log( 'ctc_text_train', self.tokenizer.decode( ctc_output[0].argmax(dim=-1).tolist(), ignore_repeat=True)) # if self.step==1 or self.step % (self.PROGRESS_STEP * 5) == 0: # self.write_log('spec_train',feat_to_fig(feat[0].transpose(0,1).cpu().detach(), spec=True)) del total_loss if self.emb_fuse: if self.emb_decoder.fuse_learnable: self.write_log( 'fuse_lambda', {'emb': self.emb_decoder.get_weight()}) self.write_log('fuse_temp', {'temp': self.emb_decoder.get_temp()}) # Validation if (self.step == 1) or (self.step % self.valid_step == 0): if type(self.dv_set) is list: for dv_id in range(len(self.dv_set)): self.validate(self.dv_set[dv_id], self.dv_names[dv_id]) else: self.validate(self.dv_set, self.dv_names) # End of step # if self.step % EMPTY_CACHE_STEP == 0: # Empty cuda cache after every fixed amount of steps torch.cuda.empty_cache( ) # https://github.com/pytorch/pytorch/issues/13246#issuecomment-529185354 self.timer.set() if self.step > self.max_step: break n_epochs += 1 self.log.close() print('[INFO] Finished training after', human_format(self.max_step), 'steps.') def validate(self, _dv_set, _name): # Eval mode self.model.eval() if self.emb_decoder is not None: self.emb_decoder.eval() dev_wer = {'att': [], 'ctc': []} dev_cer = {'att': [], 'ctc': []} dev_er = {'att': [], 'ctc': []} for i, data in enumerate(_dv_set): self.progress('Valid step - {}/{}'.format(i + 1, len(_dv_set))) # Fetch data feat, feat_len, txt, txt_len = self.fetch_data(data) # Forward model with torch.no_grad(): ctc_output, encode_len, att_output, att_align, dec_state = \ self.model( feat, feat_len, int(max(txt_len)*self.DEV_STEP_RATIO), emb_decoder=self.emb_decoder) if att_output is not None: dev_wer['att'].append( cal_er(self.tokenizer, att_output, txt, mode='wer')) dev_cer['att'].append( cal_er(self.tokenizer, att_output, txt, mode='cer')) dev_er['att'].append( cal_er(self.tokenizer, att_output, txt, mode=self.val_mode)) if ctc_output is not None: dev_wer['ctc'].append( cal_er(self.tokenizer, ctc_output, txt, mode='wer', ctc=True)) dev_cer['ctc'].append( cal_er(self.tokenizer, ctc_output, txt, mode='cer', ctc=True)) dev_er['ctc'].append( cal_er(self.tokenizer, ctc_output, txt, mode=self.val_mode, ctc=True)) # Show some example on tensorboard if i == len(_dv_set) // 2: for i in range(min(len(txt), self.DEV_N_EXAMPLE)): if self.step == 1: self.write_log('true_text_{}_{}'.format(_name, i), self.tokenizer.decode(txt[i].tolist())) if att_output is not None: self.write_log( 'att_align_{}_{}'.format(_name, i), feat_to_fig(att_align[i, 0, :, :].cpu().detach())) self.write_log( 'att_text_{}_{}'.format(_name, i), self.tokenizer.decode( att_output[i].argmax(dim=-1).tolist())) if ctc_output is not None: self.write_log( 'ctc_text_{}_{}'.format(_name, i), self.tokenizer.decode( ctc_output[i].argmax(dim=-1).tolist(), ignore_repeat=True)) # Ckpt if performance improves tasks = [] if len(dev_er['att']) > 0: tasks.append('att') if len(dev_er['ctc']) > 0: tasks.append('ctc') for task in tasks: dev_er[task] = sum(dev_er[task]) / len(dev_er[task]) dev_wer[task] = sum(dev_wer[task]) / len(dev_wer[task]) dev_cer[task] = sum(dev_cer[task]) / len(dev_cer[task]) if dev_er[task] < self.best_wer[task][_name]: self.best_wer[task][_name] = dev_er[task] self.save_checkpoint( 'best_{}_{}.pth'.format( task, _name + (self.save_name if self.transfer_learning else '')), self.val_mode, dev_er[task], _name) if self.step >= self.max_step: self.save_checkpoint( 'last_{}_{}.pth'.format( task, _name + (self.save_name if self.transfer_learning else '')), self.val_mode, dev_er[task], _name) self.write_log(self.WER, {'dv_' + task + '_' + _name.lower(): dev_wer[task]}) self.write_log('cer', {'dv_' + task + '_' + _name.lower(): dev_cer[task]}) # if self.transfer_learning: # print('[{}] WER {:.4f} / CER {:.4f} on {}'.format(human_format(self.step), dev_wer[task], dev_cer[task], _name)) # Resume training self.model.train() if self.transfer_learning: self.model.encoder.fix_layers(self.fix_enc) if self.fix_dec and self.model.enable_att: self.model.decoder.fix_layers() if self.fix_dec and self.model.enable_ctc: self.model.fix_ctc_layer() if self.emb_decoder is not None: self.emb_decoder.train()