def calc_msit_stcs_diff(args): args = meg.read_cmd_args(dict( subject=args.subject, mri_subject=args.mri_subject, task='MSIT', data_per_task=True, contrast='interference', cleaning_method='nTSSS')) smooth = False fname_format, fname_format_cond, conditions = meg.init(args.subject[0], args, args.mri_subject[0]) stc_template_name = meg.STC_HEMI_SMOOTH if smooth else meg.STC_HEMI stc_fnames = [stc_template_name.format(cond=cond, method=args.inverse_method[0], hemi='lh') for cond in conditions.keys()] output_fname = stc_template_name.format(cond='diff', method=args.inverse_method[0], hemi='lh') meg.calc_stc_diff(*stc_fnames, output_fname)
def calc_mne_python_sample_data_stcs_diff(args): args = meg.read_cmd_args(dict( subject=args.subject, mri_subject=args.mri_subject, contrast = 'audvis', fname_format = '{subject}_audvis-{ana_type}.{file_type}', fname_format_cond = '{subject}_audvis_{cond}-{ana_type}.{file_type}', conditions = ['LA', 'RA'] )) smooth = False fname_format, fname_format_cond, conditions = meg.init(args.subject[0], args, args.mri_subject[0]) stc_template_name = meg.STC_HEMI_SMOOTH if smooth else meg.STC_HEMI stc_fnames = [stc_template_name.format(cond=cond, method=args.inverse_method[0], hemi='lh') for cond in conditions.keys()] output_fname = stc_template_name.format(cond='diff', method=args.inverse_method[0], hemi='lh') meg.calc_stc_diff(*stc_fnames, output_fname)