def __init__(self, sample: Sample, std: Standard): self.sample = sample self.std = std self.distance = [sequence_distance_1(self.std.seq_max0, seq_max0) for seq_max0 in self.sample.seq_max0] self.va = [plot_image(visual_analysis, xr) for xr in self.distance] self.stat = [stat_analysis(xr) for xr in self.distance] self.ntest = [test_normal(xr, qq=True) for xr in self.distance] self.distance_apl = [sequence_distance_1(self.std.seq_max_apl, seq_max0) for seq_max0 in self.sample.seq_max0] self.va_apl = [plot_image(visual_analysis, xr) for xr in self.distance_apl] self.stat_apl = [stat_analysis(xr) for xr in self.distance_apl] self.ntest_apl = [test_normal(xr, qq=True) for xr in self.distance_apl] self.sample_name = self.sample.display()
def __init__(self, std: Standard, samples: list): self.std = std self.samples = samples[:] self.distance = [[ sequence_distance_1(sample.seq_max[factor], self.std.seq_max) for sample in self.samples ] for factor in range(4)] self.max_list = [] for factor in range(4): max_list_factor = [] for sample_num in range(len(self.samples)): max_list_factor.append( np.mean(self.distance[factor][sample_num])) self.max_list.append(max_list_factor) self.va = [ plot_image(visual_analysis, max_list_factor) for max_list_factor in self.max_list ] self.stat = [ stat_analysis(max_list_factor) for max_list_factor in self.max_list ] self.ntest = [ test_normal(max_list_factor, qq=True) for max_list_factor in self.max_list ]
def __init__(self, sample: Sample, factor: int, std: Standard): self.sample = sample self.factor = factor self.std = std self.distance = sequence_distance_1(self.std.seq_max0, self.sample.seq_max0[factor]) self.va = plot_image(visual_analysis, self.distance) self.stat = stat_analysis(self.distance) self.ntest = test_normal(self.distance, qq=True) self.distance_apl = sequence_distance_1(self.std.seq_max_apl, self.sample.seq_max0[factor]) self.va_apl = plot_image(visual_analysis, self.distance_apl) self.stat_apl = stat_analysis(self.distance_apl) self.ntest_apl = test_normal(self.distance_apl, qq=True) self.sample_name = self.sample.display() self.factor_name = FACTORS_L[self.factor]
def __init__(self, stds: list, sample: Sample, factor: int): self.stds = stds[:] self.sample = sample self.factor = factor self.distance = [ sequence_distance_1(self.sample.seq_max[factor], std.seq_max) for std in self.stds ] self.va = [plot_image(visual_analysis, xr) for xr in self.distance] self.stat = [stat_analysis(xr) for xr in self.distance] self.ntest = [test_normal(xr, qq=True) for xr in self.distance] self.sample_name = self.sample.display() self.factor_name = FACTORS_L[self.factor]
def __init__(self, stds: list, sample: Sample): self.stds = stds[:] self.sample = sample self.distance = [[ sequence_distance_1(self.sample.seq_max[factor], std.seq_max) for factor in range(4) ] for std in self.stds] self.va = [[plot_image(visual_analysis, factor) for factor in xr] for xr in self.distance] self.stat = [[stat_analysis(factor) for factor in xr] for xr in self.distance] self.ntest = [[test_normal(factor, qq=True) for factor in xr] for xr in self.distance] self.sample_name = self.sample.display()
def __init__(self, stds: list, samples: list, factor: int): self.stds = stds[:] self.samples = samples[:] self.factor = factor self.distance = [[ sequence_distance_1(sample.seq_max[self.factor], std.seq_max) for sample in self.samples ] for std in self.stds] self.max_list = [[ np.mean(std[sample_num]) for sample_num in range(len(self.samples)) ] for std in self.distance] self.va = [plot_image(visual_analysis, xr) for xr in self.max_list] self.stat = [stat_analysis(xr) for xr in self.max_list] self.ntest = [test_normal(xr, qq=True) for xr in self.max_list] self.factor_name = FACTORS_L[self.factor]
def __init__(self, std: Standard, samples: list, factor: int): self.std = std self.samples = samples[:] self.factor = factor self.distance = [ sequence_distance_1(sample.seq_max[self.factor], self.std.seq_max) for sample in self.samples ] self.max_list = [] for sample_num in range(len(self.samples)): self.max_list.append(np.mean(self.distance[sample_num])) self.va = plot_image(visual_analysis, self.max_list) self.stat = stat_analysis(self.max_list) self.ntest = test_normal(self.max_list, qq=True) self.factor_name = FACTORS_L[self.factor]
def __init__(self, stds: list, samples: list): self.stds = stds[:] self.samples = samples[:] self.distance = [[[ sequence_distance_1(factor, std.seq_max) for factor in sample.seq_max ] for sample in self.samples] for std in self.stds] self.max_list = [[[ np.mean(std[sample_num][factor]) for sample_num in range(len(self.samples)) ] for factor in range(4)] for std in self.distance] self.va = [[plot_image(visual_analysis, factor) for factor in xr] for xr in self.max_list] self.stat = [[stat_analysis(factor) for factor in std] for std in self.max_list] self.ntest = [[test_normal(factor, qq=True) for factor in std] for std in self.max_list]
def report_ntest(report, doc: Printer): res_ok = "пройден" res_nok = "не пройден" shapiro = report["shapiro"] doc.add_paragraph("Тест нормальности Шапиро-Вилка: {}".format(res_ok if shapiro["res"] else res_nok)) agostino = report["agostino"] doc.add_paragraph("Тест нормальности Д'Агостино и Пирсона: из {0} прогонов доля {1}/{0} = {2:.2f} отклоняет " "гипотезу о нормальности на уровне отклонения {3}" .format(agostino["num_tests"], agostino["num_rejects"], agostino["ratio"], agostino["alpha"])) ks = report["ks"] doc.add_paragraph("Тест нормальности Колмогорова-Смирнова: из {0} прогонов доля {1}/{0} = {2:.2f} отклоняет " "гипотезу о нормальности на уровне отклонения {3}" .format(ks["num_tests"], ks["num_rejects"], ks["ratio"], ks["alpha"])) if report['qq'] and doc.destination == "doc": img = plot_image(test_normal_plot, report) doc.add_paragraph("QQ-тест:") doc.add_picture(img, width=Cm(12.5))