Example #1
0
def implementationOne():
    # constants
    u0 = 1.0
    C_f = 1.0
    C_s = 1.0

    # create the blocks, with no parameters or parameter functions
    b0 = b.Block(
        '0',  # name
        {'u': u0})  # boundary state, this is fixed
    b1 = b.Block(
        '1',  # name
        {
            'u': 0,
            'v': 0
        })  # states, and their initial guesses
    b2 = b.Block(
        '2',  # name
        {'u': 0})  # states, and their initial guesses

    # create the fluxes
    # flux from 0 to 1
    F_P = {'C_f': C_f}  # dictionary of parameters for the flux
    # flux is from b0, function is F_u
    f_u01 = f.Flux(b0, F_u, F_P, 'f_u01')
    # flux is from b1, function is F_u
    f_u12 = f.Flux(b1, F_u, F_P, 'f_u12')
    # flux is from b2, function is F_v
    # parameter argument is optional, if not used
    # we don't technically need a name, they really exist
    # for debugging, and if we want to do something that
    # requires us to remove the flux, here it is defaulted to ''
    f_v21 = f.Flux(b2, F_v)
    # add these fluxes to the right blocks
    b1.addFlux(f_u01)
    b1.addFlux(f_v21)
    b2.addFlux(f_u12)

    # create the sources
    S_uP = {'C_s': C_s}
    S_vP = {'g': g}
    s_u1 = s.Source(S_u, S_uP, 's_u1')
    s_u2 = s.Source(S_u, S_uP, 's_u2')
    # again name argument is optional
    s_v1 = s.Source(S_v, S_vP)
    b1.addSource(s_u1)
    b2.addSource(s_u2)

    # create and solve the problem
    problem = p.Problem([b1, b2])
    problem.solve()

    # the blocks now contain their own values,
    # which are the correct values
    print "Running first implementation of example code"
    print b1
    print b2
Example #2
0
def implementationTwo():
    # constants
    u0 = 1.0
    C_f = 1.0
    C_s = 1.0

    # create the blocks, with no parameters or parameter functions
    b1 = b.Block(
        '1',  # name
        {
            'u': 0,
            'v': 0
        })  # states, and their initial guesses
    b2 = b.Block(
        '2',  # name
        {'u': 0})  # states, and their initial guesses

    # create the fluxes
    # flux from 0 to 1
    F_P = {'C_f': C_f}  # dictionary of parameters for the flux
    # flux is from b1, function is F_u
    f_u12 = f.Flux(b1, F_u, F_P, 'f_u12')
    # flux is from b2, function is F_v
    # name argument is optional
    # parameter argument is optional too, if not used
    f_v21 = f.Flux(b2, F_v)
    # add these fluxes to the right blocks
    b1.addFlux(f_v21)
    b2.addFlux(f_u12)

    # create the sources
    # these are parameters for the new boundary source
    S_0P = {'C_f': C_f, 'u_0': u0}
    S_uP = {'C_s': C_s}
    S_vP = {'g': g}
    s_u0 = s.Source(S_0, S_0P, 'boundary')
    s_u1 = s.Source(S_u, S_uP, 's_u1')
    s_u2 = s.Source(S_u, S_uP, 's_u2')
    # again name argument is optional
    s_v1 = s.Source(S_v, S_vP)
    # add the boundary source in with the other ones
    b1.addSource(s_u0)
    b1.addSource(s_u1)
    b2.addSource(s_u2)

    # create and solve the problem
    problem = p.Problem([b1, b2])
    problem.solve()

    # the blocks now contain their own values,
    # which are the correct values
    print "Running second implementation of example code"
    print b1
    print b2
Example #3
0
def diffusion2D(N):
  d = 2./float(N) # spacing, delta 
  # initialize with exact solution at t = 0
  B = []
  for i in range(-1,N+1):
    for j in range(-1,N+1):
      x = (i*d+d/2)
      y = (j*d+d/2)
      # block has a simple name
      name = '('+str(i)+','+str(j)+')'
      B.append(b.Block(name,
        # initialize to exact solution
        {'u':math.sin(u_a*math.pi*x)*math.sin(u_b*math.pi*y),
         'v':math.sin(v_a*math.pi*x)*math.sin(v_b*math.pi*y)}, 
         None, # no parameter functions
         {'x':x,'y':y})) 

  # Flux geometry 
  P = {'d':d*d}
  n = N+2 # add two for the boundaries
  for i in range(1,n-1):
    for j in range(1,n-1):
      # Add fluxes, looping around the edges
      for k in [(i-1)*n+j, i*n+j-1,(i+1)*n+j, i*n+j+1]:
        B[i*n+j].addFlux(f.Flux(B[k],difference,P))

  interiorBlocks = [B[i*n+j] for i in range(1,n-1) for j in range(1,n-1)]

  # sort out the boundary blocks
  boundaryBlocks = []
  bcRange = [j         for j in range(1,n-1)] + \
            [(n-1)*n+j for j in range(1,n-1)] + \
            [i*n       for i in range(0,n)] + \
            [i*n+n-1   for i in range(0,n)] 

  for k in bcRange:
    B[k].addSource(s.Source(time,None,B[k].name))
    boundaryBlocks.append(B[k])

  # solve the problem on the interior blocks,
  # pass in the boundary blocks so they can be updated
  # at each needed time.
  # solve the unstead problem at the following timesteps
  P = p.Problem(interiorBlocks,boundaryBlocks)
  P.solveUnst(np.linspace(0,tf,10))
  
  # calculate the error for accuracy checking
  Eu = 0
  Ev = 0
  for bb in interiorBlocks:
    (x,y) = (bb.p['x'],bb.p['y'])
    ue = math.exp(-nu_u*math.pi*math.pi*(u_a*u_a+u_b*u_b)*tf)*math.sin(u_a*math.pi*x)*math.sin(u_b*math.pi*y)
    ve = math.exp(-nu_v*math.pi*math.pi*(v_a*v_a+v_b*v_b)*tf)*math.sin(v_a*math.pi*x)*math.sin(v_b*math.pi*y)
    Eu += (bb['u']-ue)**2
    Ev += (bb['v']-ve)**2

  return (math.sqrt(Eu/(n-2)/(n-2)),math.sqrt(Ev)/(n-2)/(n-2))
Example #4
0
def poisson2D(N):
    """ 
	lets define a uniform square mesh on [-1, 1] x [1, 1]
	and create boundary blocks as we go,
	initializing based on the exact solution, and naming the block by its coordinates
	"""
    d = 2. / float(N)  # spacing, delta X
    B = [
        b.Block('(' + str(i * d - d / 2 - 1) + ',' + str(j * d - d / 2 - 1) +
                ')',
                None,
                u=math.exp((i * d - d / 2 - 1) * (j * d - d / 2 - 1)),
                v=math.exp((i * d - d / 2 - 1)**2 + (j * d - d / 2 - 1)**2))
        for i in range(0, N + 2) for j in range(0, N + 2)
    ]

    # interior sources
    # use the name to get the source values
    for block in B:
        (x, y) = eval(block.name)
        block.addSource(
            s.Source('const',
                     u=-(x * x + y * y) * math.exp(x * y),
                     v=-4.0 * (x * x + y * y + 1.0) * math.exp(x * x + y * y)))
    # Flux geometry
    G = {'type': 'edge', 'd': d * d, 'm': []}
    n = N + 2  # add two for the boundaries
    for i in range(1, n - 1):
        for j in range(1, n - 1):
            # Add fluxes, no "normals" so we cheat and define them cleverly
            for k in [(i - 1) * n + j, i * n + j - 1, (i + 1) * n + j,
                      i * n + j + 1]:
                B[i * n + j].addFlux(f.Flux(B[k], 'difference', G))
            B[i * n + j].state['u'] = 0.
            B[i * n + j].state['v'] = 0.
    interiorBlocks = [
        B[i * n + j] for i in range(1, n - 1) for j in range(1, n - 1)
    ]

    # solve the problem on the interior blocks
    P = p.Problem(interiorBlocks)
    P.solve()
    Eu = math.sqrt(
        sum([(math.exp(eval(block.name)[0] * eval(block.name)[1]) -
              block.state['u'])**2
             for block in interiorBlocks]) / (n - 2) / (n - 2))
    Ev = math.sqrt(
        sum([(math.exp(eval(block.name)[0]**2 + eval(block.name)[1]**2) -
              block.state['v'])**2
             for block in interiorBlocks]) / (n - 2) / (n - 2))
    return (Eu, Ev)
Example #5
0
def diff2D(N):
    """ 
	lets define a uniform square mesh on [-1, 1] x [1, 1]
	and create boundary blocks as we go,
	initializing based on the exact solution, and naming the block by its coordinates
	"""
    u_a = 1
    u_b = 1
    nu_u = 1
    v_a = 1
    v_b = 1
    nu_v = 0.5
    tf = 1
    d = 2. / float(N)  # spacing, delta
    # initialize with exact solution at t = 0
    B = [b.Block('('+str(i*d-d/2-1)+','+str(j*d-d/2-1)+')',None,
     u = math.sin(u_a*math.pi*(i*d-d/2-1))*math.sin(u_b*math.pi*(j*d-d/2-1)),
     v = math.sin(v_a*math.pi*(i*d-d/2-1))*math.sin(v_b*math.pi*(j*d-d/2-1))) \
     for i in range(0,N+2) for j in range(0,N+2)]

    # Flux geometry
    G = {'type': 'edge', 'd': d * d, 'm': []}
    n = N + 2  # add two for the boundaries
    for i in range(1, n - 1):
        for j in range(1, n - 1):
            # Add fluxes, no "normals" so we cheat and define them cleverly
            for k in [(i - 1) * n + j, i * n + j - 1, (i + 1) * n + j,
                      i * n + j + 1]:
                B[i * n + j].addFlux(f.Flux(B[k], 'difference', G))
            B[i * n + j].state['u'] = 0.
            B[i * n + j].state['v'] = 0.

    interiorBlocks = [
        B[i * n + j] for i in range(1, n - 1) for j in range(1, n - 1)
    ]
    boundaryBlocks = []
    bcRange = [j         for j in range(1,n-1)] + \
         [(n-1)*n+j for j in range(1,n-1)] + \
         [i*n       for i in range(0,n)] + \
         [i*n+n-1   for i in range(0,n)]

    for k in bcRange:
        (x, y) = eval(B[k].name)
        B[k].addSource(s.Source('time', \
         u = lambda t: math.exp(-nu_u*math.pi*math.pi*(u_a*u_a+u_b*u_b)*t)*math.sin(u_a*math.pi*x)*math.sin(u_b*math.pi*y), \
         v = lambda t: math.exp(-nu_v*math.pi*math.pi*(v_a*v_a+v_b*v_b)*t)*math.sin(v_a*math.pi*x)*math.sin(v_b*math.pi*y)))
        boundaryBlocks.append(B[k])

    # solve the problem on the interior blocks
    P = p.Problem(interiorBlocks, boundaryBlocks)
    P.solveUnst(0, tf, 10)
    # P.printSolution()
    Eu = 0
    Ev = 0
    t = tf
    for bb in interiorBlocks:
        (x, y) = eval(bb.name)
        ue = math.exp(-nu_u * math.pi * math.pi *
                      (u_a * u_a + u_b * u_b) * t) * math.sin(
                          u_a * math.pi * x) * math.sin(u_b * math.pi * y)
        ve = math.exp(-nu_v * math.pi * math.pi *
                      (v_a * v_a + v_b * v_b) * t) * math.sin(
                          v_a * math.pi * x) * math.sin(v_b * math.pi * y)
        Eu += (bb.state['u'] - ue)**2
        Ev += (bb.state['v'] - ve)**2

    # Eu = math.sqrt(sum([(math.exp(-nu_u*math.pi*math.pi*(u_a*u_a+u_b*u_b)*tf)*math.sin(u_a*math.pi*block.name[0])*math.sin(u_b*math.pi*block.name[1]) \
    # 	-block.state['u'])**2 for block in interiorBlocks])/(n-2)/(n-2))
    # Ev = math.sqrt(sum([(math.exp(-nu_v*math.pi*math.pi*(v_a*v_a+v_b*v_b)*tf)*math.sin(v_a*math.pi*block.name[0])*math.sin(v_b*math.pi*block.name[1]) \
    # -block.state['v'])**2 for block in interiorBlocks])/(n-2)/(n-2))
    return (math.sqrt(Eu / (n - 2) / (n - 2)),
            math.sqrt(Ev) / (n - 2) / (n - 2))
Example #6
0
a0.mdot = 0.005

# All these boundary blocks need are temperatures
# define Exterior boundary condition
aExt = b.Block('Exterior', 'air', T=25.0)
# define Interior boundary condition
aInt = b.Block('Interior', 'air', T=22.5)
""" Sources used in even numbered blocks """

# Here, constant sources are defined using the optional arguments
# to pass in information about the source variable (Temperature)
# and its value
qa = -0.008  # Heat flow into water from Module Heat Receiver
qw = -0.003  # Heat flow into air from Heat Loss from the Module

Sa = s.Source('const', T=qa)
Sw = s.Source('const', T=qw)
""" Block Initialization """

w1 = b.Block('water1', 'constWater', T=13)
w2 = b.Block('water2', 'constWater', T=13)
a1 = b.Block('air1', 'constAir', T=20)
a2 = b.Block('air2', 'constAir', T=20)

w1.mdot = w0.mdot
w2.mdot = w1.mdot
a1.mdot = a0.mdot
a2.mdot = a1.mdot

a2.addSource(Sa)
w2.addSource(Sw)
Example #7
0
def implementationThree():
    # constants
    u0 = 1.0
    C_f = 1.0
    C_s = 1.0

    # create the blocks, with no parameters or parameter functions
    b0 = b.Block(
        '0',  # name
        {'u': u0})  # boundary state, this is fixed
    b1 = b.Block(
        '1',  # name
        {
            'u': 0,
            'v': 0
        },  # states, and their initial guesses
        {'g': g},  # parameter functions
        {
            'C_f': C_f,
            'C_s': C_s
        })  # parameter constants
    b2 = b.Block(
        '2',  # name
        {'u': 0},  # states, and their initial guesses
        None,  # no parameter functions are needed in this block
        {
            'C_f': C_f,
            'C_s': C_s
        })  # parameter constants

    # create the fluxes
    # flux from 0 to 1
    # flux is from b0, function is F_u
    # no parameter dictionaries needed
    f_u01 = f.Flux(b0, F_u3)
    # flux is from b1, function is F_u
    f_u12 = f.Flux(b1, F_u3)
    # flux is from b2, function is F_v
    # name argument is optional
    # parameter argument is optional too, if not used
    f_v21 = f.Flux(b2, F_v)
    # add these fluxes to the right blocks
    b1.addFlux(f_u01)
    b1.addFlux(f_v21)
    b2.addFlux(f_u12)

    # create the sources
    # no parameters or names needed,
    # they come from the plots
    s_u1 = s.Source(S_u3)
    s_u2 = s.Source(S_u3)
    s_v1 = s.Source(S_v3)
    b1.addSource(s_u1)
    b2.addSource(s_u2)

    # create and solve the problem
    problem = p.Problem([b1, b2])
    problem.solve()

    # the blocks now contain their own values,
    # which are the correct values
    print "Running third implementation of example code"
    print b1
    print b2
Example #8
0
def poisson2D(N):
    """ 
  lets define a uniform square mesh on [-1, 1] x [1, 1]
  and create boundary blocks as we go,
  initializing based on the exact solution, and naming the block by its coordinates
  """
    d = 2. / float(N)  # spacing, Delta x = Delta y
    # For N blocks in each direction, N+2 blocks since we have a constant block on each end surrounding the domain
    # a ghost cell approach, there are no parameters in this case, or parameter functions needed
    # the center of the cell is at (i*d+d/2,j*d+d/2)
    B = []
    for i in range(-1, N + 1):
        for j in range(-1, N + 1):
            x = (i * d + d / 2)
            y = (j * d + d / 2)
            # block has a simple name
            name = '(' + str(i) + ',' + str(j) + ')'
            B.append(
                b.Block(
                    name,
                    {
                        'u': math.exp(x * y),
                        'v': math.exp(x**2 + y**2)
                    },  # initialize to exact solution
                    None,  # no parameter functions
                    {
                        'x': x,
                        'y': y
                    }))  # parameter of coordinates
    # interior sources, -f['u'] and -f['v']
    for block in B:
        (x, y) = (block.p['x'], block.p['y'])
        block.addSource(
            s.Source(
                s.constant,  # standard function defined in source.py
                {
                    'u': -(x * x + y * y) * math.exp(x * y),
                    'v': -4.0 * (x * x + y * y + 1.0) * math.exp(x * x + y * y)
                },  # parameters
                'constant'))  # name

    # Flux geometry
    P = {'d': d * d}  # divide by delta x^2 in the end
    n = N + 2  # add two for the boundaries
    for i in range(1, N + 1):
        for j in range(1, N + 1):
            # Add fluxes, figuring out which neighbors to connect to
            for k in [(i - 1) * n + j, i * n + j - 1, (i + 1) * n + j,
                      i * n + j + 1]:
                B[i * n + j].addFlux(f.Flux(B[k], difference, P))

    interiorBlocks = [
        B[i * n + j] for i in range(1, N + 1) for j in range(1, N + 1)
    ]

    # solve the problem on the interior blocks
    P = p.Problem(interiorBlocks)
    P.solve()
    # compute the L-2 error against the exact solution for both variables
    Eu = math.sqrt(
        sum([(math.exp(block.p['x'] * block.p['y']) - block['u'])**2
             for block in interiorBlocks]) / (n - 2) / (n - 2))
    Ev = math.sqrt(
        sum([(math.exp(block.p['x']**2 + block.p['y']**2) - block['v'])**2
             for block in interiorBlocks]) / (n - 2) / (n - 2))
    return (Eu, Ev)
Example #9
0
import numpy as np
from src import point, vector, line, source

# Initializing Wifi source at random 3D location, which we don't know
sx, sy, sz = np.random.randint(0, 100, 1)[0], np.random.randint(
    0, 100, 1)[0], np.random.randint(0, 100, 1)[0]

wifi = source.Source(sx, sy, sz)

# Initializing our Detector at 0,0,0
initx, inity, initz = 0, 0, 0

# Getting Intensity of WIfi Signal
start = point.Point(initx, inity, initz)
start.Intensity(wifi)

#################################### XY PLANE ###########################################

# Moving to 1,1,0 from 0,0,0
init_p1, init_p2 = point.Point(initx, inity, initz), point.Point(1, 1, initz)

# Moving Along XY Plane
# Creating a line path where our detector should be moving to detect the source
init_line = line.Line(init_p1, init_p2, axis=2)

# Moving along above defined line to find 2D location
interation = 100
found = False
counter = 0
step = 1