import re import sys import nltk import time from SPARQLWrapper import SPARQLWrapper, JSON from multiprocessing.pool import ThreadPool #import matplotlib.pyplot as plt import statistics from difflib import SequenceMatcher import spacy nlp = spacy.load('en') dbpediaSPARQL="http://localhost:3030/ds/sparql" #"http://sparql.cs.upb.de:8891/sparql" dbpediaSPARQL2="http://localhost:3030/ds/sparql" #"http://sparql.cs.upb.de:8891/sparql" stopWordsList=stopwords.getStopWords() comparsion_words=stopwords.getComparisonWords() def get_verbs(question): verbs=[] text = nlp(question) for token in text: if token.pos_=="VERB": verbs.append(token.text) return verbs def split_base_on_verb(combinations,question): newCombinations=[] verbs=get_verbs(question) flag=False
import spacy import time import statistics from src import stopwords as wiki_stopwords from Elastic import searchIndex as wiki_search_elastic #from falcon2.evaluation import evaluation as wiki_evaluation #from evaluateFalcon2 import read_dataset from SPARQLWrapper import SPARQLWrapper, JSON, POST from multiprocessing.pool import ThreadPool from difflib import SequenceMatcher nlp = spacy.load('en_core_web_sm') wikidataSPARQL = "http://node3.research.tib.eu:4010/sparql" stopWordsList = wiki_stopwords.getStopWords() comparsion_words = wiki_stopwords.getComparisonWords() evaluation = False def get_verbs(question): verbs = [] text = nlp(question) for token in text: if token.pos_ == "VERB": verbs.append(token.text) return verbs def split_base_on_verb(combinations, question): newCombinations = []