def floyd_warshal(g: Graph): """ the Floyd–Warshall algorithm is an algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles). A single execution of the algorithm will find the lengths (summed weights) of the shortest paths between all pairs of vertices, though it does not return details of the paths themselves. Time complexity: O(V^3) """ vertices_mapping = dict(zip(g.get_vertices(), count())) # Build V*V matrix initialized to sys.maxsize matrix = [[sys.maxsize] * len(vertices_mapping) for _ in range(len(vertices_mapping))] # Set distance to itself to zero for vertex in g.get_vertices(): matrix[vertices_mapping[vertex]][vertices_mapping[vertex]] = 0 # Set distance for all edges for vertex in g.get_vertices(): for edge in g.get_outgoing_edges(vertex): succesive_vertex = edge.a if edge.a != vertex else edge.b matrix[vertices_mapping[vertex]][vertices_mapping[succesive_vertex]] = edge.weight # Main loop for k in g.get_vertices(): for i in g.get_vertices(): for j in g.get_vertices(): matrix[vertices_mapping[i]][vertices_mapping[j]] = min(matrix[vertices_mapping[i]][vertices_mapping[k]] + \ matrix[vertices_mapping[k]][vertices_mapping[j]], matrix[vertices_mapping[i]][vertices_mapping[j]]) return [(a, b, matrix[vertices_mapping[a]][vertices_mapping[b]]) for a in g.get_vertices() for b in g.get_vertices() if matrix[vertices_mapping[a]][vertices_mapping[b]] != sys.maxsize]
def dijkstra(graph: Graph, start_node, end_node) -> (int, List): """ Dijkstras shortest path algorithm implementation Works for directed and undirected graphs with non negative weights Time complexity: O(EV + V^2 * logV) :return Returns a tuple of the distance of the shortest path and the nodes to reach the shortest path """ # Min heap pq = FibonacciHeap() pq.insert((0, start_node)) # Final distances and paths from the start node distances = {key: sys.maxsize for key in graph.get_vertices()} paths = {key: [] for key in graph.get_vertices()} # Finished nodes visited_nodes = set() # Set start node distance to 0 distances[start_node] = 0 while not pq.is_empty(): distance, vertex = pq.pop() if distance == sys.maxsize or end_node in visited_nodes: # Only unconnected vertices are left or we found the minimal distance break for outgoing_edge in graph.get_outgoing_edges(vertex): next_vertex = outgoing_edge.a if outgoing_edge.a != vertex else outgoing_edge.b if next_vertex in visited_nodes: continue if distance + outgoing_edge.weight < distances[next_vertex]: distances[next_vertex] = distance + outgoing_edge.weight paths[next_vertex] = paths[vertex] + [next_vertex] pq.insert((distance + outgoing_edge.weight, next_vertex)) visited_nodes.add(vertex) return distances[end_node], paths[end_node]
def points_are_connected(graph: Graph, a, b, visited_points=None): if not visited_points: visited_points = set() if a == b: return True visited_points.add(a) for i in graph.get_successive_vertices(a): if i not in visited_points: if points_are_connected(graph, i, b, visited_points): return True return False
def points_are_connected(graph:Graph, a, b, visited_points=None): if not visited_points: visited_points = set() if a == b: return True visited_points.add(a) for i in graph.get_successive_vertices(a): if i not in visited_points: if points_are_connected(graph, i, b, visited_points): return True return False
def floyd_warshal(g: Graph): """ the Floyd–Warshall algorithm is an algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles). A single execution of the algorithm will find the lengths (summed weights) of the shortest paths between all pairs of vertices, though it does not return details of the paths themselves. Time complexity: O(V^3) """ vertices_mapping = dict(zip(g.get_vertices(), count())) # Build V*V matrix initialized to sys.maxsize matrix = [[sys.maxsize] * len(vertices_mapping) for _ in range(len(vertices_mapping))] # Set distance to itself to zero for vertex in g.get_vertices(): matrix[vertices_mapping[vertex]][vertices_mapping[vertex]] = 0 # Set distance for all edges for vertex in g.get_vertices(): for edge in g.get_outgoing_edges(vertex): succesive_vertex = edge.a if edge.a != vertex else edge.b matrix[vertices_mapping[vertex]][ vertices_mapping[succesive_vertex]] = edge.weight # Main loop for k in g.get_vertices(): for i in g.get_vertices(): for j in g.get_vertices(): matrix[vertices_mapping[i]][vertices_mapping[j]] = min(matrix[vertices_mapping[i]][vertices_mapping[k]] + \ matrix[vertices_mapping[k]][vertices_mapping[j]], matrix[vertices_mapping[i]][vertices_mapping[j]]) return [(a, b, matrix[vertices_mapping[a]][vertices_mapping[b]]) for a in g.get_vertices() for b in g.get_vertices() if matrix[vertices_mapping[a]][vertices_mapping[b]] != sys.maxsize]