Example #1
0
        1.0,
        0.4,  # cat feature 1
        -1.0,
        3.0,
        -1.0,
        -0.5,  # cat feature 2
        0.00001,  # n1
        0.7
    ]),
    bias=0.5)

train_data = SyntheticDataGenerator(config).data
test_data = SyntheticDataGenerator(config).data

l2 = 3
model = RobustLogisticModel(1, l2_epsilon=l2, config=config)

inputs, y = next(iter(train_data()))

y_ = model(inputs)  # just to build the model and get input shapes

# run an exp
run(config, train_data, test_data, l2, robust_frac=0.5, epochs=4, lr=0.01)

# test various perturbations
inputs_pert_num = model.perturb_numeric(inputs, y)

inputs_pert_cat = model.perturb_categorical(inputs, y)

a = 1
Example #2
0
from src.train import run
from src.envs import get_envs

if __name__ == '__main__':
    # os.putenv('SDL_VIDEODRIVER', 'fbcon')
    # os.environ["SDL_VIDEODRIVER"] = "dummy"
    envs = get_envs()

    parser = argparse.ArgumentParser()
    parser.add_argument('--update_on', default=False, action="store_true")
    parser.add_argument('--env_num', default=0)
    parser.add_argument('--seed_num', default=0)
    parser.add_argument('--sequence_length', default=8)
    parser.add_argument('--replay_memory', default=100)

    args = parser.parse_args()

    print(envs[int(args.env_num)].name, envs[int(args.env_num)].max_episode)

    run(envs[int(args.env_num)], int(args.seed_num), args.update_on,
        int(args.sequence_length), int(args.replay_memory))

    send('Complete {}, {}, {}, {}, {}'.format(envs[int(args.env_num)].name,
                                              args.seed_num,
                                              str(args.update_on),
                                              args.sequence_length,
                                              args.replay_memory))
    # send('Complete : ' + envs[int(args.env_num)].name + '\n seed: ' + args.seed_num + '\n update-on' + str(args.update_on))

    # python test.py --update_on --env_num=0 --seed_num=100 --sequence_length=8 --replay_memory=100
Example #3
0
               l2_epsilon=0.0,
               num_perturbed_categoricals=1,
               col_spec=col_spec,
               label_name=target)

pd.set_option('display.max_columns', 500)
pd.set_option('max_colwidth', 1000)
pd.set_option('display.width', 1000)
epochs = 400
batch = 20
lr = 0.01

res_10 = run(config,
             X,
             y,
             robust_frac=0.1,
             epochs=epochs,
             batch_size=batch,
             lr=lr,
             verbose=False)

res_20 = run(config,
             X,
             y,
             robust_frac=0.2,
             epochs=epochs,
             batch_size=batch,
             lr=lr,
             verbose=False)

res_50 = run(config,
             X,
Example #4
0
def main():
	train.run(n_agents, load_path, model_path, starting_index, final_index, batch, load_model)
Example #5
0
from env import OhmniInSpace
from src import train

if sys.argv[1] == '--test':
    if sys.argv[2] == 'py-env':
        ois = OhmniInSpace.PyEnv(gui=True)
        timestep = ois.reset()
        while not timestep.is_last():
            timestep = ois.step(action=(0.4, 0.4))
            (_, reward, discount, observation) = timestep
            print('Reward:', reward)
            ois.render()
            cv.imshow('Segmentation', observation)
            if cv.waitKey(10) & 0xFF == ord('q'):
                break
    if sys.argv[2] == 'tf-env':
        ois = OhmniInSpace.TfEnv()
        tf_env = ois.gen_env()
        print("TimeStep Specs:", tf_env.time_step_spec())
        print("Action Specs:", tf_env.action_spec())

elif sys.argv[1] == '--ohmni':
    if sys.argv[2] == 'train':
        train.train()
    if sys.argv[2] == 'run':
        train.run()

else:
    print("Error: Invalid option!")
Example #6
0
train.display_message('+++++++++++++Creating DataLoaders+++++++++++++')
train_ds, valid_ds = train.get_datasets(path_dogs,
                                        human_train,
                                        human_valid,
                                        stats=batch_stat,
                                        size=args.img_size)
bs = args.batch_size
dls = train.get_dls(train_ds, valid_ds, bs=bs)
train.display_message(
    '+++++++++++++Getting Model ready for training+++++++++++++')
model = models.ModelScratch()
device = train.get_device()
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
criterion = loss_func.CustomLoss(train_ds.dog_human_labeller)
recorder = metrics.Recorder()
n_epochs = args.n_epochs
train.run(n_epochs,
          model,
          optimizer,
          criterion,
          dls,
          device,
          recorder,
          max_lr=args.max_lr,
          env='shell')
utils.save_model(
    model,
    f'model_scratch_{n_epochs}_{recorder.valid_acc_breed[-1].item():.2f}',
    train_ds.breed_labeller, train_ds.dog_human_labeller, batch_stat)
Example #7
0
    elif len(sensor) == 2 and 's1' in sensor and 's2' in sensor:
        model = Model_S1S2(drop, n_classes)
    elif len(sensor) == 2 and 's2' in sensor and 'spot' in sensor:
        model = Model_S2SPOT(drop, n_classes)
    elif len(sensor) == 1 and 's1' in sensor:
        model = Model_S1(drop, n_classes)
    elif len(sensor) == 1 and 's2' in sensor:
        model = Model_S2(drop, n_classes)
    elif len(sensor) == 1 and 'spot' in sensor:
        model = Model_SPOT(drop, n_classes)

    # Learning stage
    checkpoint_path = os.path.join(out_path, 'model')

    run(model, train_S1, train_S2, train_MS, train_Pan, train_y, valid_S1,
        valid_S2, valid_MS, valid_Pan, valid_y, checkpoint_path, batch_size,
        lr, n_epochs, sensor, weight)

    # Load Test set
    test_y = format_y(gt_path + '/test_gt.npy', encode=False)
    print('Test GT:', test_y.shape)

    if 's1' in sensor:
        test_S1 = format_cnn2d(s1_path + '/test_S1.npy')
        print('Test S1:', test_S1.shape)
    else:
        test_S1 = None

    if 's2' in sensor:
        test_S2 = format_cnn1d(s2_path + '/test_S2.npy')
        print('Test S2:', test_S2.shape)