Example #1
0
def main():
    """
        loop throught all config file and display result.
    :return:
    """
    logger = Logger('Main')
    logger.info('begin operation on bloom filter')

    # ---------------------------------------------------------------
    # Get parameters from config file
    list_visualisation = []
    dic_response = create_bloom_filters(logger, METHOD)
    list_visualisation.append(dic_response[Constants.DIS_INPUTS])
    list_visualisation.append(dic_response[Constants.DIS_TESTS])
    list_visualisation.append(dic_response[Constants.DIS_DOUBLE])
    list_visualisation.append(dic_response[ARF_METHOD])
    visualize_curve(list_visualisation, "dimension", " Rate false positive (%)", "DELTA "+str(DELTA) + " N and tests "+
                    str(SIZE_DATA)+" Dim "+str(DIM)+" DOMAIN "+str(DOMAIN))
def main():
    """
        loop throught all config file and display result.
    :return:
    """
    logger = Logger('Main')
    logger.info('begin operation on bloom filter')

    # ---------------------------------------------------------------
    # Get parameters from config file
    list_visualisation = []
    for config_file in os.listdir(PATH_CONFIG):
        print(config_file)
        list_visualisation.append(
            run_test_on_bloom_filter(logger, PATH_CONFIG, config_file))

    visualize_curve(list_visualisation, "ratio m/n",
                    " rate false positive (%)",
                    "Comparaison discretization method in Dimension 2")
Example #3
0
def main():
    """
        loop throught all config file and display result.
    :return:
    """
    logger = Logger('Main')
    logger.info('begin operation on bloom filter')

    # ---------------------------------------------------------------
    # Get parameters from config file
    list_visualisation = []
    a = create_bloom_filters(logger)
    list_visualisation.append(("dis_input", a[0], a[1][0]))
    list_visualisation.append(("dis_test", a[0], a[1][1]))
    list_visualisation.append(("dis_double", a[0], a[1][2]))
    #list_visualisation.append(("dis_circle", a[0], a[1][3]))
    list_visualisation.append(("arf", a[0], a[1][3]))
    #list_visualisation.append(("dis_none", a[0], a[1][3]))
    visualize_curve(
        list_visualisation, "delta", " rate false positive (%)",
        "Dimension: " + str(DIMENSION) + "   size_set n: " + str(SIZE_DATA) +
        "   rate size_bloom/size_set n/m: " + str(RATE_M_N) + "    domain: " +
        str(DOMAIN) + "   number_of tests: " + str(TESTS))
Example #4
0
 def __init__(self):
     self.__logger = Logger().get_logger()
     self.__access_token = str()
 def __init__(self):
     self.__logger = Logger().get_logger()
     self.__repository = GameUserRepository()
     self.__auth_business = AuthBusiness()
Example #6
0
 def __init__(self, path):
     self.path = path
     self.logger = Logger('Arf')
     self.compile()
 def __init__(self, dimension, file_path):
     DataProvider.__init__(self, dimension)
     self.file_path = file_path
     self.logger = Logger('ReaderFromFile')
import pandas as pd
import numpy as np
from random import randint, uniform

from src.providerData.DataProvider import DataProvider
from src.structureData.Point import Point
from src.util.Logger import Logger
# -----------------------------------------------------------------------------------------
# Constant

DATA_FOLDER = "../../data"

# -----------------------------------------------------------------------------------------
# Code

logger = Logger("RandomDataGenerator")


class RandomDataGenerator(DataProvider):
    """
    This class allow to provide data randomly.
    Args :
    :param dimension: int that represent dimention of the vector that will be in the data.
    :param size_of_data_set: Size of the data set.
    :param domain: int that represent domain ([0,<domain>]) for dimension of the vectors that will be in the data.
    :param distribution: distribution of the random value:
        - 0 : uniform
        - x (10 > x >= 1): x normal laws superposed
    :param point_list: DataFrame that contain the data points:
    """
    def __init__(self,
 def __init__(self):
     self.__mongo_configuration = MongoConfiguration()
     self.__database = self.__mongo_configuration.database
     self.__game_user_collection = self.__database.game_user_collection
     self.__logger = Logger().get_logger()
Example #10
0
 def __init__(self):
     self.__logger = Logger().get_logger()
     self.__mongo_configuration = MongoConfiguration()
     self.__database = self.__mongo_configuration.database
     self.__user_collection = self.__database.user_collection
     self.__user_collection.create_index("login", unique=True)
 def __init__(self):
     self.__logger = Logger().get_logger()
Example #12
0
# -------- Aim of the file

# This file provide a class Point that will be our data strutur for the data that will fit our Bloom Filter

# -------- Import

import abc
from src.util.Logger import Logger

# --------- Constant


# --------- Code
logger = Logger("DataProvider")

class DataProvider:
    """
    This class is the interface for all data providers. The data provided will be use by the Bloom filter.
    Args :
    :param dimension: int that represent dimention of the vector that will be in the data.
    :param size_of_data_set: Size of the data set.
    """
    __metaclass__ = abc.ABCMeta


    def __init__(self, dimension):
        self.dimension = dimension
        self.point_list = []

    @abc.abstractmethod
    def get_points(self):
Example #13
0
 def __init__(self):
     self.__user_bussiness = UserBusiness()
     self.__logger = Logger().get_logger()
Example #14
0
 def __init__(self):
     self.__user_repository = UserRepository()
     self.__access_token_business = AccessTokenBusiness()
     self.__logger = Logger().get_logger()