import numpy as np

from src.fcnet import FullyConnectedNet
from src.utils.solver import Solver
from src.utils.data_utils import get_CIFAR10_data

"""
TODO: Overfit the network with 50 samples of CIFAR-10
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################

datapath = datadir = ('/home/mat10/Documents/MSc Machine Learning/395-Machine Learning/'
           'CW2/assignment2_advanced/datasets/cifar-10-batches-py')
data = get_CIFAR10_data(datapath, num_training=50, num_validation=100, num_test=100,
                     subtract_mean=True)

hidden_dims = [1024, 512]
net = FullyConnectedNet(hidden_dims, num_classes=10, dropout=0., reg=0.0, seed=0)

solver = Solver(net,
                data,
                update_rule='sgd',
                optim_config={'learning_rate': 1e-3,
                              'momentum': 0.5},
                lr_decay=0.95,
                num_epochs=20,
                batch_size=10,
                print_every=100)
solver.train()
Example #2
0
from src.evaluator import draw_loss_acc

"""
TODO: Overfit the network with 50 samples of CIFAR-10
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################
TRAIN_NUM = 50
VALID_NUM = 1
TEST_NUM = 10

CLASS_NUM = 10

data = get_CIFAR10_data(TRAIN_NUM, VALID_NUM, TEST_NUM)

print (data["y_test"].shape)
print (data["y_test"])

INPUT_DIMS = np.prod(data["X_train"].shape[1:])
HIDDEN_DIMS = np.asarray([400, 400])

fcnn = FullyConnectedNet(HIDDEN_DIMS, INPUT_DIMS, CLASS_NUM)
solver = Solver(fcnn, data, update_rule='sgd', optim_config={"learning_rate":1e-3}, print_every=1, num_epochs=20)
solver.train()

y = fcnn.predict(data["X_test"])
print (y)
fcnn.save()
import numpy as np

from src.fcnet import FullyConnectedNet
from src.utils.solver import Solver
from src.utils.data_utils import get_CIFAR10_data
"""
TODO: Use a Solver instance to train a TwoLayerNet that achieves at least 50% 
accuracy on the validation set.
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################
#define model and data
model = FullyConnectedNet(hidden_dims=[20, 30])
data = get_CIFAR10_data()

# define solver which helps us to train our model using the data
solver = Solver(model, data, lr_decay=0.95, num_epochs=30, batch_size=120)

# train the model
solver.train()
##############################################################################
#                             END OF YOUR CODE                               #
##############################################################################
Example #4
0
import numpy as np

from src.fcnet import FullyConnectedNet
from src.utils.solver1 import Solver
from src.utils.data_utils import get_CIFAR10_data
"""
TODO: Overfit the network with 50 samples of CIFAR-10
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################
data = dict()
data = get_CIFAR10_data(50, 50)
model = FullyConnectedNet([2000, 2000], reg=1e-3)
solver = Solver(model,
                data,
                update_rule='sgd',
                optim_config={
                    'learning_rate': 1e-3,
                },
                lr_decay=0.95,
                num_epochs=10,
                batch_size=100,
                print_every=100)
solver.train()

import matplotlib.pyplot as plt
plt.subplot(2, 1, 1)
plt.title('Trainingloss')
plt.plot(solver.loss_history, 'o')
plt.xlabel('Iteration')
Example #5
0
import numpy as np

from src.fcnet import FullyConnectedNet
from src.utils.solver import Solver
from src.utils.data_utils import get_CIFAR10_data

"""
TODO: Overfit the network with 50 samples of CIFAR-10
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################
data = get_CIFAR10_data(49, 1, 0)

INPUT_DIMS = np.prod(data["X_train"].shape[1:])
HIDDEN_DIMS = np.asarray([400,400])
NUM_CLASS = 10
net = FullyConnectedNet(HIDDEN_DIMS,INPUT_DIMS,NUM_CLASS)
solver = Solver(net, data,update_rule='sgd',optim_config={\
                'learning_rate': 1e-3},\
            num_epochs=20,\
            batch_size = 10,\
            print_every=1)
solver.train()


##############################################################################
#                             END OF YOUR CODE                               #
##############################################################################
Example #6
0
import numpy as np

from src.fcnet import FullyConnectedNet
from src.utils.solver import Solver
from src.utils.data_utils import get_CIFAR10_data
"""
TODO: Overfit the network with 50 samples of CIFAR-10
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################
# define model and data
model = FullyConnectedNet(hidden_dims=[20, 30])
data = get_CIFAR10_data(num_training=50)

# define solver which helps us to train our model using the data
solver = Solver(model, data, num_epochs=20, num_train_samples=50)

# train our model using the solver
solver.train()
##############################################################################
#                             END OF YOUR CODE                               #
##############################################################################
Example #7
0
import numpy as np

from src.fcnet import FullyConnectedNet
from src.utils.solver import Solver
from src.utils.data_utils import get_CIFAR10_data
"""
TODO: Use a Solver instance to train a TwoLayerNet that achieves at least 50% 
accuracy on the validation set.
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################
datapath = datadir = (
    '/home/mat10/Documents/MSc Machine Learning/395-Machine Learning/'
    'CW2/assignment2_advanced/datasets/cifar-10-batches-py')
data = get_CIFAR10_data(datapath)

hidden_dims = [512, 256]
net = FullyConnectedNet(hidden_dims,
                        num_classes=10,
                        dropout=0.0,
                        reg=0.2,
                        seed=0)

solver = Solver(net,
                data,
                update_rule='sgd_momentum',
                optim_config={
                    'learning_rate': 1e-3,
                    'momentum': 0.9
                },
Example #8
0
import numpy as np
import matplotlib.pyplot as plt

from src.fcnet import FullyConnectedNet
from src.utils.solver import Solver
from src.utils.data_utils import get_CIFAR10_data
"""
TODO: Use a Solver instance to train a TwoLayerNet that achieves at least 50% 
accuracy on the validation set.
"""
###########################################################################
#                           BEGIN OF YOUR CODE                            #
###########################################################################

out = get_CIFAR10_data(num_training=25000)
data = {
    'X_train': out['X_train'],  # training data
    'y_train': out['y_train'],  # training labels
    'X_val': out['X_val'],  # validation data
    'y_val': out['y_val']  # validation labels
}
model = FullyConnectedNet(hidden_dims=[100],
                          num_classes=10,
                          dropout=0,
                          reg=0.5)
solver = Solver(model,
                data,
                update_rule='sgd',
                optim_config={
                    'learning_rate': 2e-3,
                },