def gen_user_get_shop_coupon(offline_source, online_source, X): offline = Matrix( np.genfromtxt(paths.ccf_path + offline_source, delimiter=',', dtype=str), ["uid", "mid", "cid", "dis_rate", "dist", "date_rec", "date"], ["%s" for i in xrange(7)]) online = Matrix( np.genfromtxt(paths.ccf_path + online_source, delimiter=',', dtype=str), ["uid", "mid", "act", "cid", "dis_rate", "date_rec", "date"], ["%s" for i in xrange(7)]) user_get_shop_coupon = HashSet() for i in xrange(offline.ndata): uid_str = offline.get_cell(i, "uid") cid_str = offline.get_cell(i, "cid") mid_str = offline.get_cell(i, "mid") if cid_str != 'null': if not user_get_shop_coupon.has(uid_str): user_get_shop_coupon.set(uid_str, HashSet()) user_get_shop_coupon.get(uid_str).add_one(mid_str) for i in xrange(online.ndata): uid_str = online.get_cell(i, "uid") cid_str = online.get_cell(i, "cid") mid_str = online.get_cell(i, "mid") act_str = online.get_cell(i, "act") if cid_str != 'null' and act_str != '0': if not user_get_shop_coupon.has(uid_str): user_get_shop_coupon.set(uid_str, HashSet()) user_get_shop_coupon.get(uid_str).add_one(mid_str) X.join_by_double_key("uid", "mid", "user_get_shop_coupon", user_get_shop_coupon, "%s", dft=0.0) def divide(x, y): assert float(x) <= float(y) if float(y) == 0: return 0.0 else: return float(x) * 1.0 / float(y) X.gen_arith_feature("user_buy_with_coupon_in_shop", "user_get_shop_coupon", "user_use_shop_coupon_freq", divide, "%s", dft=0.0)
def gen_user_buy_in_shop(matrix_offline, matrix_online, X): user_buy_in_shop = HashSet(default=matrix_offline.default) for i in xrange(matrix_offline.ndata): date_str = matrix_offline.get_cell(i, 'date') uid_str = matrix_offline.get_cell(i, 'uid') mid_str = matrix_offline.get_cell(i, "mid") if date_str != 'null': if not user_buy_in_shop.has(uid_str): user_buy_in_shop.set(uid_str, HashSet()) user_buy_in_shop.get(uid_str).add_one(mid_str) for i in xrange(matrix_online.ndata): act_str = matrix_online.get_cell(i, 'act') uid_str = matrix_online.get_cell(i, 'uid') mid_str = matrix_online.get_cell(i, "mid") if act_str == '1': if not user_buy_in_shop.has(uid_str): user_buy_in_shop.set(uid_str, HashSet()) user_buy_in_shop.get(uid_str).add_one(mid_str) X.join_by_double_key("uid", "mid", "user_buy_in_shop", user_buy_in_shop, "%s", dft=0.0) def divide(x, y): assert float(x) <= float(y) if float(y) == 0: return 0 else: return float(x) * 1.0 / float(y) X.gen_arith_feature("user_buy_in_shop", "user_buy", "user_buy_in_shop_ratio", divide, fmt="%s", dft=0.0)
def gen_merchant_share(X, month): offline = Matrix( np.genfromtxt(paths.ccf_path + 'offline_train_{0}.csv'.format(month), delimiter=',', dtype=str), ["uid", "mid", "cid", "dis_rate", "dist", "date_rec", "date"], ["%s" for i in xrange(7)]) online = Matrix( np.genfromtxt(paths.ccf_path + 'online_train_{0}.csv'.format(month), delimiter=',', dtype=str), ["uid", "mid", "act", "cid", "dis_rate", "date_rec", "date"], ["%s" for i in xrange(7)]) merchant_user_buy = HashSet() merchant_user_use_coupon = HashSet() merchant_user_buy_counter = HashSet() merchant_user_use_coupon_counter = HashSet() for i in xrange(offline.ndata): if i % 100000 == 0: print i mid_str = offline.get_cell(i, "mid") uid_str = offline.get_cell(i, "uid") date_str = offline.get_cell(i, "date") cid_str = offline.get_cell(i, "cid") if date_str != 'null': if not merchant_user_buy.has(mid_str): merchant_user_buy.set(mid_str, HashSet()) if not merchant_user_buy.get(mid_str).has(uid_str): merchant_user_buy.get(mid_str).add_one(uid_str) merchant_user_buy_counter.add_one(mid_str) if cid_str != 'null': if not merchant_user_use_coupon.has(mid_str): merchant_user_use_coupon.set(mid_str, HashSet()) if not merchant_user_use_coupon.get(mid_str).has(uid_str): merchant_user_use_coupon.get(mid_str).add_one(uid_str) merchant_user_use_coupon_counter.add_one(mid_str) for i in xrange(online.ndata): if i % 100000 == 0: print i mid_str = online.get_cell(i, "mid") uid_str = online.get_cell(i, "uid") act_str = online.get_cell(i, "act") cid_str = online.get_cell(i, "cid") if act_str == '1': if not merchant_user_buy.has(mid_str): merchant_user_buy.set(mid_str, HashSet()) if not merchant_user_buy.get(mid_str).has(uid_str): merchant_user_buy.get(mid_str).add_one(uid_str) merchant_user_buy_counter.add_one(mid_str) if cid_str != 'null': if not merchant_user_use_coupon.has(mid_str): merchant_user_use_coupon.set(mid_str, HashSet()) if not merchant_user_use_coupon.get(mid_str).has(uid_str): merchant_user_use_coupon.get(mid_str).add_one(uid_str) merchant_user_use_coupon_counter.add_one(mid_str) X.join("mid", ["merchant_user_buy"], merchant_user_buy_counter, ["%s"], dft=0.0) X.join("mid", ["merchant_user_use_coupon"], merchant_user_use_coupon_counter, ["%s"], dft=0.0) X.check_point(month)
def gen_user_buy_coupon_in_shop(matrix_offline, matrix_online, X): user_buy_with_coupon_in_shop = HashSet() user_buy_without_coupon_in_shop = HashSet() for i in xrange(matrix_offline.ndata): uid_str = matrix_offline.get_cell(i, "uid") cid_str = matrix_offline.get_cell(i, "cid") date_str = matrix_offline.get_cell(i, "date") mid_str = matrix_offline.get_cell(i, "mid") if date_str != 'null': if not user_buy_with_coupon_in_shop.has(uid_str): user_buy_with_coupon_in_shop.set(uid_str, HashSet()) user_buy_without_coupon_in_shop.set(uid_str, HashSet()) if cid_str != 'null': user_buy_with_coupon_in_shop.get(uid_str).add_one(mid_str) else: user_buy_without_coupon_in_shop.get(uid_str).add_one(mid_str) for i in xrange(matrix_online.ndata): uid_str = matrix_online.get_cell(i, "uid") cid_str = matrix_online.get_cell(i, "cid") mid_str = matrix_online.get_cell(i, "mid") act_str = matrix_online.get_cell(i, "act") if act_str == '1': if not user_buy_with_coupon_in_shop.has(uid_str): user_buy_with_coupon_in_shop.set(uid_str, HashSet()) user_buy_without_coupon_in_shop.set(uid_str, HashSet()) if cid_str != 'null': user_buy_with_coupon_in_shop.get(uid_str).add_one(mid_str) else: user_buy_without_coupon_in_shop.get(uid_str).add_one(mid_str) X.join_by_double_key("uid", "mid", "user_buy_with_coupon_in_shop", user_buy_with_coupon_in_shop, "%s", dft=0.0) X.join_by_double_key("uid", "mid", "user_buy_without_coupon_in_shop", user_buy_without_coupon_in_shop, "%s", dft=0.0) def divide(x, y): assert float(x) <= float(y) if float(y) == 0: return 0 else: return float(x) * 1.0 / float(y) X.gen_arith_feature("user_buy_with_coupon_in_shop", "user_buy_in_shop", "user_buy_with_coupon_in_shop_ratio", divide, "%s", dft=0.0) X.gen_arith_feature("user_buy_without_coupon_in_shop", "user_buy_in_shop", "user_buy_without_coupon_in_shop_ratio", divide, "%s", dft=0.0)
def gen_coupon_gap(X, month): get_coupon_history = HashSet() get_coupon_history_user = HashSet() for i in xrange(X.ndata): if i % 100000 == 0: print i uid_str = X.get_cell(i, "uid") mid_str = X.get_cell(i, "mid") date_rec_str = X.get_cell(i, "date_rec") if date_rec_str != 'null': history_list = get_coupon_history.get(uid_str, HashSet()).get(mid_str, []) #if date_rec_str not in history_list: history_list.append(date_rec_str) user_history_list = get_coupon_history_user.get(uid_str, []) #if date_rec_str not in user_history_list: user_history_list.append(date_rec_str) if month > 1: last_X = Matrix( np.genfromtxt(paths.ccf_path + 'offline_1_month{0}.csv'.format(month - 1), delimiter=',', dtype=str), ["uid", "mid", "cid", "dis_rate", "dist", "date_rec", "date"], ["%s" for i in xrange(7)]) for i in xrange(last_X.ndata): if i % 100000 == 0: print i uid_str = last_X.get_cell(i, "uid") mid_str = last_X.get_cell(i, "mid") date_rec_str = last_X.get_cell(i, "date_rec") if date_rec_str != 'null': history_list = get_coupon_history.get(uid_str, HashSet()).get( mid_str, []) #if date_rec_str not in history_list: history_list.append(date_rec_str) user_history_list = get_coupon_history_user.get(uid_str, []) #if date_rec_str not in user_history_list: user_history_list.append(date_rec_str) if month < 7: next_X = Matrix( np.genfromtxt(paths.ccf_path + 'offline_1_month{0}.csv'.format(month + 1), delimiter=',', dtype=str), ["uid", "mid", "cid", "dis_rate", "dist", "date_rec", "date"], ["%s" for i in xrange(7)]) for i in xrange(next_X.ndata): if i % 100000 == 0: print i uid_str = next_X.get_cell(i, "uid") mid_str = next_X.get_cell(i, "mid") date_rec_str = next_X.get_cell(i, "date_rec") if date_rec_str != 'null': history_list = get_coupon_history.get(uid_str, HashSet()).get( mid_str, []) #if date_rec_str not in history_list: history_list.append(date_rec_str) user_history_list = get_coupon_history_user.get(uid_str, []) #if date_rec_str not in user_history_list: user_history_list.append(date_rec_str) for i in xrange(X.ndata): if i % 100000 == 0: print i uid_str = X.get_cell(i, "uid") mid_str = X.get_cell(i, "mid") history_list = get_coupon_history.get(uid_str, HashSet()).get(mid_str, []) get_coupon_history.get(uid_str).set(mid_str, np.sort(history_list)) user_history_list = get_coupon_history_user.get(uid_str, []) get_coupon_history_user.set(uid_str, np.sort(user_history_list)) col_names = [ "prev_gap", "next_gap", "user_prev_gap", "user_next_gap", "in_between", "prev_gap_prev", "next_gap_prev" ] gaps = np.zeros((X.ndata, len(col_names))) for i in xrange(X.ndata): if i % 100000 == 0: print i uid_str = X.get_cell(i, "uid") mid_str = X.get_cell(i, "mid") date_rec_str = X.get_cell(i, "date_rec") history_list = get_coupon_history.get(uid_str).get(mid_str) user_history_list = get_coupon_history_user.get(uid_str) k = -1 for j in xrange(len(history_list)): ##if history_list[j] == date_rec_str: if j == len(history_list) - 1 or history_list[j + 1] > date_rec_str: break else: k += 1 in_between = 1 if k > 0: prev_gap = days_dis(history_list[k], date_rec_str) else: prev_gap = 0 in_between = 0 if k + 2 < len(history_list): next_gap = days_dis(date_rec_str, history_list[k + 2]) else: next_gap = 0 in_between = 0 k = -1 for j in xrange(len(user_history_list)): ##if user_history_list[j] == date_rec_str: if j == len(history_list) - 1 or history_list[j + 1] > date_rec_str: break else: k += 1 if k > 0: user_prev_gap = days_dis(user_history_list[k], date_rec_str) else: user_prev_gap = 0 if k + 2 < len(user_history_list): user_next_gap = days_dis(date_rec_str, user_history_list[k + 2]) else: user_next_gap = 0 k = -1 for j in xrange(len(history_list)): if history_list[j] == date_rec_str: ##if j == len(history_list) - 1 or history_list[j + 1] > date_rec_str: break else: k += 1 if k > 0: prev_gap_prev = days_dis(history_list[k], date_rec_str) else: prev_gap_prev = 0 if k + 2 < len(history_list): next_gap_prev = days_dis(date_rec_str, history_list[k + 2]) else: next_gap_prev = 0 in_between = 0 gaps[i, :] = np.array([ prev_gap, next_gap, user_prev_gap, user_next_gap, in_between, prev_gap_prev, next_gap_prev ]) X.cat_col(gaps, col_names, ["%s" for i in xrange(len(col_names))]) X.check_point("X_{0}_{1}{2}_gap".format(month, 1, month - 1))