### step2: get edges if wholes is not None: edges = [] lls = [] # store line structure with extended points and original lines, eliminate extreme lines houghs = [] for box in wholes: ROI = arr[box[1]:box[3], box[0]:box[2]] edges, sigma, cur_ROI= best_edges(ROI, threshold=0.02) # showimage_pil(edges) ### step3: hough from src.utils.hough import hough_horizontal fn = result_dir + '/' + testn + 'canny_hough' lines_init, img3 = hough_horizontal(edges, fn=None, hough_line_len=40, line_gap=50, save=False, show=True, raw=img3, xdiff=box[0], ydiff=box[1]) if debug is True: raw_input("line detect from bounding box") ### 4. Extend line using smaller sigma from src.utils.util import extend_line_points from src.utils.canny import my_canny canny1 = my_canny(cur_ROI, sigma=(sigma-2), save=False, show=False) from src.utils.util import line_struct xdiff=box[0] ydiff=box[1] for line in lines_init: l = line_struct() l.line = [[line[0][0] + xdiff, line[0][1] + ydiff], [line[1][0] + xdiff, line[1][1] + ydiff]]
## 2. do canny with ROI (TODO: Probabilisticly solve this problem) from src.utils.canny import my_canny fn = result_dir + filenum +'canny' ret = my_canny(arr[:, :, 0], fn, sigma=2, save=DEBUG, show=DEBUG) y1, x1 = 200, 150 y2, x2 = 500, 350 arr2 = np.array(ret[y1:y2, x1:x2], dtype=np.int16) if DEBUG is True: temp = Image.fromarray(255*arr2.astype(np.uint8)) temp.show() ## 3. using hough_transform to find initial horizontal line from src.utils.hough import hough_horizontal fn = result_dir + filenum + 'canny_hough' lines_init = hough_horizontal(arr2, fn, hough_line_len=30, save=True, show=True, raw=img, xdiff=150, ydiff=200) ## 4. Extend line using smaller sigma (TODO: Probabilistically choose sigma) from src.utils.util import extend_line_canny_points canny1 = my_canny(arr[:, :, 0], fn, sigma=1, save=True, show=True) from src.utils.util import line_struct lines = [] # store line structure with extended points and original lines, eliminate extreme lines for line in lines_init: l = line_struct() l.line = line left, right = extend_line_canny_points(line, canny1) if left is not -1: l.extend_pts_left = left l.extend_pts_right = right lines.append(l)
""" ############################### detect edges based on boxes ############################### """ from src.utils.hough import hough_horizontal, hough_vertical from src.utils.canny import my_canny from src.utils.preprocessing import normalize box = boxes[2] window = arr[box[1]+5: box[3]-5, box[0]+5: box[2]-5] # to eliminate the edge scenario width = window.shape[1] height = window.shape[0] window = normalize(window) ret = my_canny(window, sigma=0.0, save=False, show=DEBUG) raw = Image.fromarray(np.zeros((height, width))) lineh, raw = hough_horizontal(ret, hough_line_len=30,line_gap=50, save=False, show=True, raw=raw) linev, raw = hough_vertical(ret,hough_line_len=30,line_gap=50, save=False, show=True, raw=raw ) raw.show() f = np.array(raw.convert('L').getdata()).reshape(height, width)/255. from src.utils.canny import decide_sigma decide_sigma(f, area=width*height) from src.utils.GVF import GVF, normalize_GVF_external_force u, v = GVF(f, 0.2, 80) px,py = normalize_GVF_external_force(u, v) from src.utils.io import show_vector line, plt = show_vector(px, 0-py, skip=6, holdon=True) from src.utils.snake import snake_disp from src.utils.snake import init_rect x, y = init_rect(px.shape[0], px.shape[1])