Example #1
0
    def data_generator_inference(self, subject_list, normalize_bool=False):

        it_subject_batch = 0
        image_batch = np.zeros((self.batch_size, ) + self.input_shape +
                               (self.num_modalities, ))
        mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))

        while True:

            for subject in subject_list:
                image = subject.load_channels(normalize=normalize_bool)
                for mod in range(image.shape[-1]):
                    image_batch[it_subject_batch, :, :, :,
                                mod] = resize_image(image[:, :, :, mod],
                                                    self.input_shape,
                                                    pad_value=image[0, 0, 0,
                                                                    mod])

                mask[it_subject_batch, :, :, :,
                     0] = resize_image(subject.load_ROI_mask(),
                                       self.input_shape,
                                       pad_value=0)
                if it_subject_batch + 1 == self.batch_size:
                    it_subject_batch = 0
                    yield [image_batch, mask]
                else:
                    it_subject_batch += 1
Example #2
0
    def data_generator_BraTS_mask(self,
                                  subject_list,
                                  mode='train',
                                  normalize_bool=True,
                                  sample_weights_bool=False,
                                  class_weights=None):
        if mode == 'train':
            subject_list = self.data_augmentation(subject_list)

        it_subject_batch = 0
        image_batch = np.zeros((self.batch_size, ) + self.input_shape +
                               (self.num_modalities, ))
        labels_batch = np.zeros((self.batch_size, ) + self.input_shape)
        mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))

        while True:
            np.random.shuffle(subject_list)
            for subject in subject_list:
                image = subject.load_channels(normalize=normalize_bool)
                for mod in range(image.shape[-1]):
                    image_batch[it_subject_batch, :, :, :,
                                mod] = resize_image(image[:, :, :, mod],
                                                    self.input_shape,
                                                    pad_value=image[0, 0, 0,
                                                                    mod])
                mask[it_subject_batch, :, :, :,
                     0] = resize_image(subject.load_ROI_mask(),
                                       self.input_shape,
                                       pad_value=0)
                labels_batch[it_subject_batch, :, :, :] = resize_image(
                    subject.load_tumor_mask(), self.input_shape, pad_value=0)

                if it_subject_batch + 1 == self.batch_size:
                    it_subject_batch = 0
                    if sample_weights_bool:
                        labels_batch_resized = np.reshape(
                            labels_batch, (self.batch_size, -1))
                        sample_weights = np.zeros_like(labels_batch_resized)
                        for k, v in class_weights.items():
                            sample_weights[np.where(
                                labels_batch_resized == k)] = v

                        yield ([image_batch, mask],
                               one_hot_representation(labels_batch_resized,
                                                      2), sample_weights)
                    else:
                        yield ([image_batch,
                                mask], one_hot_representation(labels_batch, 2))

                    image_batch = np.zeros((self.batch_size, ) +
                                           self.input_shape +
                                           (self.num_modalities, ))
                    labels_batch = np.zeros((self.batch_size, ) +
                                            self.input_shape)
                    mask = np.zeros((self.batch_size, ) + self.input_shape +
                                    (1, ))
                else:
                    it_subject_batch += 1
Example #3
0
    def data_generator_one(self, subject):
        image_batch = np.zeros((1, ) + self.input_shape +
                               (self.num_modalities, ))

        image = subject.load_channels()
        for mod in range(image.shape[-1]):
            image_batch[0, :, :, :,
                        mod] = resize_image(image[:, :, :, mod],
                                            self.input_shape,
                                            pad_value=image[0, 0, 0, mod])
        labels = resize_image(subject.load_labels(),
                              self.input_shape,
                              pad_value=0)[np.newaxis, :]

        return (image_batch, one_hot_representation(labels, self.n_classes),
                subject.id)
Example #4
0
    def data_generator_full(self,
                            subject_list,
                            mode='train',
                            normalize_bool=True,
                            mask=True):
        if mode == 'train':
            subject_list = self.data_augmentation(subject_list)

        it_subject_batch = 0
        image_batch = np.zeros((self.batch_size, ) + self.input_shape +
                               (self.num_modalities, ))
        labels_batch = np.zeros((self.batch_size, ) + self.input_shape)
        mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))

        while True:
            for subject in subject_list:
                image = subject.load_channels(normalize=normalize_bool)
                for mod in range(image.shape[-1]):
                    image_batch[it_subject_batch, :, :, :,
                                mod] = resize_image(image[:, :, :, mod],
                                                    self.input_shape,
                                                    pad_value=image[0, 0, 0,
                                                                    mod])
                mask[it_subject_batch, :, :, :,
                     0] = resize_image(subject.load_ROI_mask(),
                                       self.input_shape,
                                       pad_value=0)
                labels_batch[it_subject_batch, :, :, :] = resize_image(
                    subject.load_labels(), self.input_shape, pad_value=0)

                if it_subject_batch + 1 == self.batch_size:
                    it_subject_batch = 0
                    if mask:
                        yield ([image_batch, mask],
                               one_hot_representation(labels_batch,
                                                      self.n_classes))
                    else:
                        yield (image_batch,
                               one_hot_representation(labels_batch,
                                                      self.n_classes))

                else:
                    it_subject_batch += 1
Example #5
0
        dice_1[n_sbj] = dice(predictions[:, :, :, 1].flatten(),
                             labels[:, :, :, 1].flatten())
        dice_2[n_sbj] = dice(predictions[:, :, :, 2].flatten(),
                             labels[:, :, :, 2].flatten())
        dice_3[n_sbj] = dice(predictions[:, :, :, 3].flatten(),
                             labels[:, :, :, 3].flatten())

        print("Dice 1: " + str(dice_1[n_sbj]))
        print("Dice 2: " + str(dice_2[n_sbj]))
        print("Dice 3: " + str(dice_3[n_sbj]))

        #Saving images
        shape = subject.get_subject_shape()
        predictions_resized = np.zeros(shape + (params[p.N_CLASSES], ))
        for i in range(params[p.N_CLASSES]):
            predictions_resized[:, :, :, i] = preprocessing.resize_image(
                predictions[:, :, :, i], shape)

        predictions_resize_argmax = np.argmax(predictions_resized, axis=3)
        predictions_argmax = np.argmax(predictions, axis=3)

        img = nib.Nifti1Image(tf_labels(predictions_resize_argmax),
                              subject.get_affine())
        nib.save(img,
                 join(dir_path, 'results', subject.id + '_predictions.nii.gz'))

        img = nib.Nifti1Image(
            preprocessing.resize_image(inputs[1][0, :, :, :, 0], shape),
            subject.get_affine())
        nib.save(img, join(dir_path, 'results', subject.id + '_mask.nii.gz'))

        print('Subject ' + str(subject.id) + ' has finished')
Example #6
0
    for inputs, outputs, subject in generator_test:

        if params[p.MODEL_TYPE] == 'mask':
            labels = outputs[0]

            predictions = model.predict_on_batch(inputs)[0]

            predictions = np.floor(
                predictions /
                np.max(predictions, axis=3, keepdims=True)).astype('int')

            shape = subject.get_subject_shape()
            predictions_resized = np.zeros(shape + (2, ))
            for i in range(2):
                predictions_resized[:, :, :, i] = preprocessing.resize_image(
                    predictions[:, :, :, i], shape)

            #Saving images

            predictions_resize_argmax = np.argmax(predictions_resized, axis=3)
            predictions_argmax = np.argmax(predictions, axis=3)

            img = nib.Nifti1Image(predictions_resize_argmax,
                                  subject.get_affine())
            nib.save(
                img,
                join(dir_path, 'results', subject.id + '_predictions.nii.gz'))

            #Metrics:
            dice_mask[n_sbj] = dice(predictions[:, :, :, 1].flatten(),
                                    labels[:, :, :, 1].flatten())
Example #7
0
    def data_generator_BraTS_mask_seg(self,
                                      subject_list,
                                      mode='train',
                                      normalize_bool=True,
                                      sample_weights_bool=False,
                                      class_weights=None,
                                      n_iterations=None):
        if mode == 'train':
            subject_list = self.data_augmentation(subject_list)

        n_iterations = n_iterations if n_iterations is not None else len(
            subject_list)

        it_subject_batch = 0
        image_batch = np.zeros((self.batch_size, ) + self.input_shape +
                               (self.num_modalities, ))
        labels_mask_batch = np.zeros((self.batch_size, ) + self.input_shape)
        labels_seg_batch = np.zeros((self.batch_size, ) + self.input_shape)
        mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))
        tumor_mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))

        while True:
            np.random.shuffle(subject_list)
            n_sbj = 0
            for subject in subject_list:

                image = subject.load_channels(normalize=normalize_bool)
                for mod in range(image.shape[-1]):
                    image_batch[it_subject_batch, :, :, :,
                                mod] = resize_image(image[:, :, :, mod],
                                                    self.input_shape,
                                                    pad_value=image[0, 0, 0,
                                                                    mod])

                tumor_mask[it_subject_batch, :, :, :,
                           0] = resize_image(subject.load_tumor_mask(),
                                             self.input_shape,
                                             pad_value=0)
                mask[it_subject_batch, :, :, :,
                     0] = resize_image(subject.load_ROI_mask(),
                                       self.input_shape,
                                       pad_value=0)

                labels_mask_batch[it_subject_batch, :, :, :] = resize_image(
                    subject.load_tumor_mask(), self.input_shape, pad_value=0)
                labels_seg_batch[it_subject_batch, :, :, :] = resize_image(
                    subject.load_labels(), self.input_shape, pad_value=0)

                if it_subject_batch + 1 == self.batch_size:
                    if mode == 'test':
                        yield ([image_batch, mask, mask], [
                            one_hot_representation(labels_mask_batch, 2),
                            one_hot_representation(labels_seg_batch, 4),
                        ], subject)
                    else:

                        if sample_weights_bool:
                            # sample_weights = np.zeros(labels_seg_batch)
                            # for k, v in class_weights.items():
                            #     sample_weights[np.where(labels_batch_resized == k)] = v

                            yield ([image_batch, mask, tumor_mask], [
                                one_hot_representation(labels_mask_batch, 2),
                                np.concatenate((
                                    one_hot_representation(
                                        labels_seg_batch,
                                        4,
                                        class_weights=class_weights)
                                    [:, :, :, :, 1:4],
                                    one_hot_representation(
                                        labels_seg_batch,
                                        4,
                                        class_weights=class_weights)
                                    [:, :, :, :, 5:],
                                ),
                                               axis=4),
                            ])
                        else:
                            yield ([image_batch, mask, tumor_mask], [
                                one_hot_representation(labels_mask_batch, 2),
                                one_hot_representation(labels_seg_batch,
                                                       4)[:, :, :, :, 1:],
                            ])
                    it_subject_batch = 0
                    image_batch = np.zeros((self.batch_size, ) +
                                           self.input_shape +
                                           (self.num_modalities, ))
                    labels_mask_batch = np.zeros((self.batch_size, ) +
                                                 self.input_shape)
                    labels_seg_batch = np.zeros((self.batch_size, ) +
                                                self.input_shape)
                    mask = np.zeros((self.batch_size, ) + self.input_shape +
                                    (1, ))
                    tumor_mask = np.zeros((self.batch_size, ) +
                                          self.input_shape + (1, ))

                else:
                    it_subject_batch += 1

                n_sbj += 1
                if n_sbj >= n_iterations:
                    break
Example #8
0
    def data_generator_BraTS_seg(self,
                                 subject_list,
                                 mode='train',
                                 normalize_bool=True,
                                 sample_weights_bool=False,
                                 class_weights=None):
        if mode == 'train':
            subject_list = self.data_augmentation(subject_list)

        it_subject_batch = 0
        image_batch = np.zeros((self.batch_size, ) + self.input_shape +
                               (self.num_modalities, ))
        labels_seg_batch = np.zeros((self.batch_size, ) + self.input_shape)
        tumor_mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))
        mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))

        while True:
            for subject in subject_list:
                image = subject.load_channels(normalize=normalize_bool)
                for mod in range(image.shape[-1]):
                    image_batch[it_subject_batch, :, :, :,
                                mod] = resize_image(image[:, :, :, mod],
                                                    self.input_shape,
                                                    pad_value=image[0, 0, 0,
                                                                    mod])
                tumor_mask[it_subject_batch, :, :, :,
                           0] = resize_image(subject.load_tumor_mask(),
                                             self.input_shape,
                                             pad_value=0)
                mask[it_subject_batch, :, :, :,
                     0] = resize_image(subject.load_ROI_mask(),
                                       self.input_shape,
                                       pad_value=0)

                labels_seg_batch[it_subject_batch, :, :, :] = resize_image(
                    subject.load_labels(), self.input_shape, pad_value=0)

                if it_subject_batch + 1 == self.batch_size:
                    it_subject_batch = 0
                    if sample_weights_bool:
                        yield ([image_batch, mask, tumor_mask],
                               np.concatenate((
                                   one_hot_representation(
                                       labels_seg_batch,
                                       4,
                                       class_weights=class_weights)[:, :, :, :,
                                                                    1:4],
                                   one_hot_representation(
                                       labels_seg_batch,
                                       4,
                                       class_weights=class_weights)[:, :, :, :,
                                                                    5:],
                               ),
                                              axis=4))
                    else:
                        yield ([image_batch, mask, tumor_mask],
                               one_hot_representation(labels_seg_batch,
                                                      4)[:, :, :, :, 1:])

                    image_batch = np.zeros((self.batch_size, ) +
                                           self.input_shape +
                                           (self.num_modalities, ))
                    labels_seg_batch = np.zeros((self.batch_size, ) +
                                                self.input_shape)
                    tumor_mask = np.zeros((self.batch_size, ) +
                                          self.input_shape + (1, ))
                    mask = np.zeros((self.batch_size, ) + self.input_shape +
                                    (1, ))
                else:
                    it_subject_batch += 1
Example #9
0
    def data_generator_BraTS_survival(self,
                                      subject_list,
                                      mode='train',
                                      normalize_bool=True,
                                      sample_weights_bool=False):

        if mode == 'train':
            subject_list = self.data_augmentation(subject_list)

        it_subject_batch = 0
        image_batch = np.zeros((self.batch_size, ) + self.input_shape +
                               (self.num_modalities, ))
        labels_survival_batch = np.zeros((self.batch_size, ))
        boolean_lables_survival = np.zeros((self.batch_size, ))
        mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))
        tumor_mask = np.zeros((self.batch_size, ) + self.input_shape + (1, ))

        while True:
            for subject in subject_list:
                image = subject.load_channels(normalize=normalize_bool)
                for mod in range(image.shape[-1]):
                    image_batch[it_subject_batch, :, :, :,
                                mod] = resize_image(image[:, :, :, mod],
                                                    self.input_shape,
                                                    pad_value=image[0, 0, 0,
                                                                    mod])
                mask[it_subject_batch, :, :, :,
                     0] = resize_image(subject.load_ROI_mask(),
                                       self.input_shape,
                                       pad_value=0)
                tumor_mask[it_subject_batch, :, :, :,
                           0] = resize_image(subject.load_tumor_mask(),
                                             self.input_shape,
                                             pad_value=0)

                survival = subject.load_survival()
                if survival is None:
                    labels_survival_batch[it_subject_batch] = 0
                    boolean_lables_survival[it_subject_batch] = 0
                else:
                    labels_survival_batch[it_subject_batch] = survival
                    boolean_lables_survival[it_subject_batch] = 1

                if it_subject_batch + 1 == self.batch_size:

                    if sample_weights_bool:

                        yield ([image_batch, mask, boolean_lables_survival],
                               labels_survival_batch)
                    else:
                        yield ([image_batch, mask, boolean_lables_survival],
                               labels_survival_batch)
                    it_subject_batch = 0
                    image_batch = np.zeros((self.batch_size, ) +
                                           self.input_shape +
                                           (self.num_modalities, ))
                    labels_survival_batch = np.zeros((self.batch_size, ))
                    boolean_lables_survival = np.zeros((self.batch_size, ))
                    mask = np.zeros((self.batch_size, ) + self.input_shape +
                                    (1, ))
                    tumor_mask = np.zeros((self.batch_size, ) +
                                          self.input_shape + (1, ))

                else:
                    it_subject_batch += 1